
© Copyright 1993, 1995 National Instruments Corporation.
All Rights Reserved.

NI-488.2M™

Software Reference Manual
for OS/2

January 1995 Edition

Part Number 370950A-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices:
Australia (03) 879 9422, Austria (0662) 435986, Belgium 02/757.00.20,
Canada (Ontario) (519) 622-9310, Canada (Québec) (514) 694-8521,
Denmark 45 76 26 00, Finland (90) 527 2321, France (1) 48 14 24 24,
Germany 089/741 31 30, Italy 02/48301892, Japan (03) 3788-1921,
Mexico 95 800 010 0793, Netherlands 03480-33466, Norway 32-84 84 00,
Singapore 2265886, Spain (91) 640 0085, Sweden 08-730 49 70,
Switzerland 056/20 51 51, Taiwan 02 377 1200, U.K. 0635 523545

Limited Warranty

The media on which you receive National Instruments software are
warranted not to fail to execute programming instructions, due to defects in
materials and workmanship, for a period of 90 days from date of shipment,
as evidenced by receipts or other documentation. National Instruments will,
at its option, repair or replace software media that do not execute
programming instructions if National Instruments receives notice of such
defects during the warranty period. National Instruments does not warrant
that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the
factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will
pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this manual is
accurate. The document has been carefully reviewed for technical accuracy.
In the event that technical or typographical errors exist, National
Instruments reserves the right to make changes to subsequent editions of
this document without prior notice to holders of this edition. The reader
should consult National Instruments if errors are suspected. In no event
shall National Instruments be liable for any damages arising out of or
related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES
CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE
PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS,
USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the
liability of National Instruments will apply regardless of the form of action,
whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of
action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner's failure to follow the National Instruments

installation, operation, or maintenance instructions; owner's modification of
the product; owner's abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or
transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in
whole or in part, without the prior written consent of National Instruments
Corporation.

Trademarks

NI-488®, NI-488.2™, and NI-488.2M™ are trademarks of National
Instruments Corporation.

Product and company names listed are trademarks or trade names of their
respective companies.

Warning Regarding Medical and Clinical Use
of National Instruments Products

National Instruments products are not designed with components and testing
intended to ensure a level of reliability suitable for use in treatment and
diagnosis of humans. Applications of National Instruments products
involving medical or clinical treatment can create a potential for accidental
injury caused by product failure, or by errors on the part of the user or
application designer. Any use or application of National Instruments
products for or involving medical or clinical treatment must be performed by
properly trained and qualified medical personnel, and all traditional medical
safeguards, equipment, and procedures that are appropriate in the particular
situation to prevent serious injury or death should always continue to be
used when National Instruments products are being used. National
Instruments products are NOT intended to be a substitute for any form of
established process, procedure, or equipment used to monitor or safeguard
human health and safety in medical or clinical treatment.

© National Instruments Corp. v NI-488.2M SRM for OS/2

Contents

About This Manual ..xi
Organization of This Manual..xi
Conventions Used in This Manual ... xii
How to Use This Manual Set..xiv
Related Documentation ..xv
Customer Communication ..xv

Chapter 1
NI-488.2M Software Description..1-1

The NI-488.2M Software Package ... 1-1
NI-488.2M Driver and Driver Utilities1-1
Language Files ... 1-2
Example Program Files ..1-2
API-Related Files... 1-3

How the NI-488.2M Software Works with OS/2....................... 1-4
GPIB Overview ..1-5

The IEEE 488 Standard and GPIB............................... 1-5
Talkers, Listeners, and Controllers1-5
Controller-In-Charge and System Controller............... 1-6
Sending Messages Across the GPIB1-6

Data Lines ..1-6
Handshake Lines..1-6
Interface Management Lines 1-7

Setting Up and Configuring Your System 1-7
Controlling More Than One Board1-9

Chapter 2
Application Examples... 2-1

Example 1: Basic Communication ..2-2
Example 2: Clearing and Triggering Devices 2-4
Example 3: Asynchronous I/O... 2-6
Example 4: End-of-String Mode ... 2-8
Example 5: Service Requests... 2-10
Example 6: Basic Communication with IEEE 488.2

 Compliant Devices... 2-14
Example 7: Serial Polls Using NI-488.2 Routines2-16
Example 8: Parallel Polls... 2-18
Example 9: Non-Controller Example ..2-21

Contents

NI-488.2M SRM for OS/2 vi © National Instruments Corp.

Chapter 3
Developing Your Application... 3-1

Choosing a Programming Method..3-1
Using the NI-488.2 Language Interface....................... 3-1

Using NI-488 Functions: One Device for
Each Board... 3-2

NI-488 Device-Level Functions3-2
NI-488 Board-Level Functions 3-3

Using NI-488.2 Routines: Multiple Boards
and/or Multiple Devices................................. 3-3

Using the OS/2 API Interface....................................... 3-4
Checking Status with Global Variables......................................3-4

Status Word—ibsta ..3-4
Error Variable—iberr ... 3-6
Count Variables—ibcnt and ibcntl............................... 3-6

Using ibic to Communicate with Devices3-7
Writing Your NI-488 Application ..3-7

Items to Include..3-7
NI-488 Program Shell ..3-8
General Program Steps and Examples 3-9

Writing Your NI-488.2 Application ... 3-13
Items to Include..3-13
NI-488.2 Program Shell ... 3-14
General Program Steps and Examples 3-15

Compiling and Linking Your Program....................................... 3-20
32-Bit C Applications... 3-20
16-Bit C Applications... 3-21

Running Your Application Program... 3-21

Chapter 4
Debugging Your Application ... 4-1

Running ibtest... 4-1
Presence Test of Driver ..4-1
Presence Test of GPIB Board....................................... 4-2
Incorrect Interrupt Level ..4-2
GPIB Cables Connected... 4-2

Debugging with the Global Status Variables 4-3
Debugging with ibic ... 4-3
GPIB Error Codes... 4-3
Configuration Errors... 4-4

Reconfiguring the NI-488.2M Software4-5
Timing Errors ... 4-5

Contents

© National Instruments Corp. vii NI-488.2M SRM for OS/2

Communication Errors ... 4-6
Repeat Addressing ... 4-6
Termination Method... 4-6

Chapter 5
ibic—Interface Bus Interactive Control Utility5-1

Overview... 5-1
Starting ibic... 5-1
Exiting ibic ... 5-2
ibic Syntax ..5-2
Adding End-of-String Characters... 5-9
Status Word Return... 5-9
Error Codes Return... 5-10
Count Return... 5-10
Common NI-488.2 Routines in ibic ... 5-11

Send..5-11
Receive... 5-12

Common NI-488 Functions in ibic... 5-13
ibfind ..5-13
ibdev... 5-13
ibwrt ... 5-16
ibrd ... 5-17

Auxiliary Functions ..5-18
Set (Select Device or Board)..5-19
Help (Display Help Information) 5-20
! (Repeat Previous Function) 5-21
- (Turn OFF Display) and + (Turn ON Display) 5-21
n* (Repeat Function n Times)......................................5-22
$ (Execute Indirect File)... 5-23
Print (Display the ASCII String)..................................5-24

ibic Examples ... 5-24
NI-488.2 Routines Example... 5-24
NI-488 Device Functions Example5-28
NI-488 Board Functions Example 5-31

Chapter 6
GPIB Programming Techniques..6-1

Termination of Data Transfers ... 6-1
Waiting for GPIB Conditions... 6-2
Device-Level Calls and Bus Management 6-2
Serial Polling ..6-3

Service Requests from IEEE 488 Devices................... 6-3
Service Requests from IEEE 488.2 Devices6-4

Contents

NI-488.2M SRM for OS/2 viii © National Instruments Corp.

Automatic Serial Polling ..6-4
Autopolling and the Stuck SRQ State 6-5
Autopolling and Interrupts............................. 6-5

SRQ and Serial Polling with NI-488 Device
Functions ..6-6
SRQ and Serial Polling with NI-488.2 Routines 6-6

Example 1 ..6-7
Example 2 ..6-8

Parallel Polling ... 6-9
Implementing a Parallel Poll ..6-9

Parallel Polling with NI-488.2 Routines........6-9
Parallel Polling with NI-488 Functions 6-10

Chapter 7
ibconf—Interface Bus Configuration Utility 7-1

Overview... 7-1
Starting ibconf ..7-1
Levels of ibconf ..7-2

Input Selection Level ... 7-2
Map Level ..7-4

Device Map of the Boards 7-5
Help..7-5
Rename ..7-5
(Dis)connect... 7-6
Edit... 7-6
Exit... 7-6

Description Level ... 7-7
Change Characteristics................................... 7-8
Next Board/Device... 7-8
Help..7-8
Reset Value ..7-8
Return to Map ..7-8

Output Selection Level... 7-9
Board and Device Configuration Options7-9

Primary GPIB Address... 7-10
Secondary GPIB Address... 7-10
Timeout Setting ..7-10
Terminate Read on EOS... 7-11
Set EOI with EOS on Write ... 7-11
Type of Compare on EOS ..7-11
EOS Byte..7-11
Send EOI at End of Write ..7-12
GPIB-Specific Errors ... 7-12

Contents

© National Instruments Corp. ix NI-488.2M SRM for OS/2

System Controller... 7-12
Assert REN when SC... 7-12
Enable Auto Serial Polling... 7-13
Enable CIC Protocol... 7-13
Bus Timing... 7-13
Parallel Poll Duration... 7-13
Use This GPIB Interface ..7-14
Base I/O Address ... 7-14
DMA Channel ..7-14
Interrupt Jumper Setting... 7-15
DMA Transfer Mode ... 7-15
Serial Poll Timeout... 7-15
Enable Repeat Addressing ... 7-15

Default Configurations in ibconf ..7-16
Exiting ibconf ... 7-17

Appendix A
Status Word Conditions... A-1

Appendix B
Error Codes and Solutions..B-1

Appendix C
Customer Communication..C-1

Glossary... G-1

Index... I-1

Contents

NI-488.2M SRM for OS/2 x © National Instruments Corp.

Figures

Figure 1-1. How the NI-488.2M Software Works with OS/21-4
Figure 1-2. Linear and Star System Configuration............................. 1-8
Figure 1-3. Example of Multiboard System Setup............................. 1-9

Figure 2-1. Program Flowchart for Example 1................................... 2-3
Figure 2-2. Program Flowchart for Example 2................................... 2-5
Figure 2-3. Program Flowchart for Example 3................................... 2-7
Figure 2-4. Program Flowchart for Example 4................................... 2-9
Figure 2-5. Program Flowchart for Example 5................................... 2-12
Figure 2-6. Program Flowchart for Example 6................................... 2-15
Figure 2-7. Program Flowchart for Example 7................................... 2-17
Figure 2-8. Program Flowchart for Example 8................................... 2-20
Figure 2-9. Program Flowchart for Example 9................................... 2-22

Figure 3-1. General Program Shell Using NI-488 Device
Functions..3-8

Figure 3-2. General Program Shell Using NI-488.2 Routines 3-14

Figure 7-1. Input Selection Level of ibconf 7-2
Figure 7-2. Map Level of ibconf ..7-4
Figure 7-3. Description Level of ibconf ... 7-7
Figure 7-4. Output Selection Level of ibconf..................................... 7-9

Tables

Table 1-1. GPIB Handshake Lines..1-6
Table 1-2. GPIB Interface Management Lines 1-7

Table 3-1. Status Word (ibsta) Layout ..3-5

Table 4-1. GPIB Error Codes..4-4

Table 5-1. Syntax for NI-488 Functions in ibic5-3
Table 5-2. Syntax for NI-488.2 Routines in ibic............................... 5-5
Table 5-3. Auxiliary Functions in ibic ..5-18

Table A-1. Status Word (ibsta) Layout ..A-1

Table B-1. GPIB Error Codes..B-1

© National Instruments Corp. xi NI-488.2M SRM for OS/2

About This Manual

This manual describes the features and functions of the NI-488.2M software for
OS/2. The NI-488.2M software package is meant to be used with OS/2 (IBM
Operating System/2) version 2.0 or higher. This manual assumes that you are
already familiar with the OS/2 system.

Organization of This Manual

This manual is organized as follows:

• Chapter 1, NI-488.2M Software Description, describes the NI-488.2M
software package and explains how the software works with your OS/2
system.

• Chapter 2, Application Examples, contains nine sample applications designed
to illustrate specific GPIB concepts and techniques that can help you write
your own applications. The description of each example includes the
programmer’s task, a program flowchart, and numbered steps that correspond
to the numbered blocks on the flowchart.

• Chapter 3, Developing Your Application, explains how to develop a GPIB
application program using NI-488 functions and NI-488.2 routines.

• Chapter 4, Debugging Your Application, describes several ways to debug
your application program.

• Chapter 5, ibic—Interface Bus Interactive Control Utility, introduces you to
ibic , the interactive control program that you can use to communicate
with GPIB devices through functions you enter at your keyboard.

• Chapter 6, GPIB Programming Techniques, discusses the following GPIB
topics: data transfer termination methods, waiting for GPIB conditions,
device-level calls and bus management, serial polling and SRQ servicing,
and parallel polling.

• Chapter 7, ibconf—Interface Bus Configuration Utility, contains a
description of ibconf , the software configuration program you can use to
configure the NI-488.2M software.

About This Manual

NI-488.2M SRM for OS/2 xii © National Instruments Corp.

• Appendix A, Status Word Conditions, gives a detailed description of the
conditions reported in the status word, ibsta .

• Appendix B, Error Codes and Solutions, lists a description of each error,
some conditions under which it might occur, and possible solutions.

• Appendix C, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our products and
manuals.

• The Glossary contains an alphabetical list and a description of terms,
including abbreviations, acronyms, metric prefixes, mnemonics, and
symbols, that this manual uses.

• The Index contains an alphabetical list of key terms and topics in this
manual and it includes the page where you can find each term and topic.

Conventions Used in This Manual

The following conventions are used in this manual.

italic Italic text denotes emphasis, cross references, field
names, or an introduction to a key concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Text in this font denotes text or characters that you
enter from the keyboard. Sections of code,
programming examples, and syntax examples also
appear in this font. This font is also used for the
proper name of disk drives, paths, directories, device
names, variables, and for statements taken from
program code.

bold monospace Bold text in this font denotes the messages and responses
that the computer automatically prints to the screen.

About This Manual

© National Instruments Corp. xiii NI-488.2M SRM for OS/2

italic monospace Italic lowercase text in this font denotes that you must
supply the appropriate words or values in the place of
these items.

<> Angle brackets enclose the name of a key on the
keyboard—for example, <PageDown>.

<Enter> Key names are capitalized.

- A hyphen between two or more key names enclosed
in angle brackets denotes that you should
simultaneously press the named keys—for example,
<Control-C>.

enter Enter is reserved to mean that the commands
immediately succeeding the word must be typed into
the computer and then executed by pressing the
<Return> key on the keyboard.

IEEE 488 and IEEE 488 and IEEE 488.2 refer to the
IEEE 488.2 ANSI/IEEE Standard 488.1-1987 and the

ANSI/IEEE Standard 488.2-1987, respectively,
which define the GPIB.

NI-488.2M software NI-488.2M software refers to the NI-488.2M software
for OS/2 unless otherwise noted.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms are
listed in the Glossary.

About This Manual

NI-488.2M SRM for OS/2 xiv © National Instruments Corp.

How to Use This Manual Set

NI-488.2M Software
Reference Manual

for OS/2

Application
Development
and Examples

Getting Started
Manual

Novice
Users

Installation and
Configuration

NI-488.2M Function
Reference Manual

for OS/2

Experienced
Users

Function
and Routine
Descriptions

Use the getting-started manual to install and configure your GPIB hardware and
NI-488.2M software for OS/2.

Use the software reference manual if you want to learn the basics of GPIB and
how to develop an application program. The software reference manual also
contains debugging information and detailed examples.

Use the function reference manual for specific information about each NI-488
function and NI-488.2 routine, such as format, parameters, and possible errors.

About This Manual

© National Instruments Corp. xv NI-488.2M SRM for OS/2

Related Documentation

The following documents contain information that you may find helpful as you
read this manual:

• OS/2 Technical Library, Application Design Guide

• OS/2 Technical Library, Control Program Programming Reference

• OS/2 Technical Library, Programming Guide Volume I

• OS/2 Technical Library, Programming Guide Volume II

• OS/2 Technical Library, Programming Guide Volume III

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation.

• ANSI/IEEE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols,
and Common Commands.

Customer Communication

National Instruments wants to receive your comments on our products and
manuals. We are interested in the applications you develop with our products,
and we want to help if you have problems with them. To make it easy for you to
contact us, this manual contains comment and configuration forms for you to
complete. These forms are in Appendix C, Customer Communication, at the end
of this manual.

© National Instruments Corp. 1-1 NI-488.2M SRM for OS/2

Chapter 1
NI-488.2M Software Description

This chapter describes the NI-488.2M software package and explains how the
software works with your OS/2 system.

The NI-488.2M Software Package

The following section highlights important elements of the NI-488.2M software
for OS/2 and describes the function of each element.

NI-488.2M Driver and Driver Utilities

The distribution disk contains the following driver and utility files.

• readme.doc is a documentation file that contains important information
about the NI-488.2M software and a description of any new features.
Before you use the software, read this file for the most recent information.

• install.cmd is an OS/2 command file that performs the software
installation. It does not modify your config.sys file.

• gpib.sys is the software driver file that is loaded at system startup by
OS/2.

• gpib.ddp is a device driver profile. This file is used by the OS/2
command, ddinstal , to control the installation process.

• ibic.exe is an interactive control program that you use to communicate
with the GPIB devices interactively using NI-488.2 functions and routines.
It helps you to learn the NI-488.2 routines and to program your instrument
or other GPIB devices.

• ibconf.exe is a software configuration program that changes the
configuration parameters of the NI-488.2M software.

• ibtest.exe is the software installation test.

NI-488.2M Software Description Chapter 1

NI-488.2M SRM for OS/2 1-2 © National Instruments Corp.

Language Files

The distribution disk contains the following language-related files in the
C subdirectory.

• readme.doc is a documentation file that contains information about the
language interfaces.

• ni488.dll is a 32-bit IBM C language interface Dynamic Link Library (DLL)
file.

• nibor.dll is a 32-bit Borland C language interface DLL file.

• ni488_16.dll is a 16-bit Microsoft C language interface DLL file.

• ni488.lib is an import library for the 32-bit IBM C language interface that you
must link with your IBM C applications.

• nibor.lib is an import library for the 32-bit Borland C language interface that
you must link with your Borland C applications.

• ni488_16.lib is an import library for the 16-bit Microsoft C language
interface that you must link with your Microsoft C applications.

• decl.h is a 32-bit include file. It contains NI-488 functions and NI-488.2
routine prototypes and various predefined constants.

• decl_16.h is a 16-bit include file. It contains NI-488 functions and
NI-488.2 routine prototypes and various predefined constants.

Example Program Files

The distribution disk contains the following example program files.

• simple.c is a C program that illustrates basic communication between a
computer and a GPIB device.

• clr_trg.c is a C program that illustrates how to clear or trigger GPIB devices.

• asynch.c is a C program that illustrates how to perform asynchronous I/O.

Chapter 1 NI-488.2M Software Description

© National Instruments Corp. 1-3 NI-488.2M SRM for OS/2

• rqs.c is a C program that illustrates device requests using NI-488 functions.

• easy4882.c is a C program that illustrates basic communication with
IEEE 488.2 compliant devices using NI-488.2 routines.

• eos.c is a C program that shows the use of the end-of-string character.

• rqs4882.c is a C program that illustrates serial polls using NI-488.2 routines.

• ppoll.c is a C program that illustrates parallel polls using NI-488.2 routines.

• non_cic.c is a C program that illustrates communication when the GPIB board
is not the Controller.

API-Related Files

The distribution disk contains the following API-related files in the API
subdirectory.

• readme.api is a documentation file that contains information about the
OS/2 API functions.

• nicode.h is a C language declaration file that contains definitions of NI-
488.2M function codes and other NI-488.2M-related constant and structure
definitions.

• nictl_32.h is a C language declaration file that contains a macro
definition. You can use this definition in place of the DosDevIOCtl
definition for applications that use 32-bit compilers.

• nictl_16.h is a C language declaration file that contains a macro
definition. You can use this definition in place of the DosDevIOCtl
definition for applications that use 16-bit compilers.

• dsamp_32.c is a 32-bit C sample program using API device-level calls.

• dsamp_16.c is a 16-bit C sample program using API device-level calls.

• bsamp_32.c is a 32-bit C sample program using API board-level calls.

• bsamp_16.c is a 16-bit C sample program using API board-level calls.

NI-488.2M Software Description Chapter 1

NI-488.2M SRM for OS/2 1-4 © National Instruments Corp.

How the NI-488.2M Software Works with OS/2

The NI-488.2M driver operates as a standard OS/2 system device driver, which
is loaded at system startup. OS/2 device driver services are available to all OS/2
programs running in the system.

Figure 1-1 shows two ways you can access the NI-488.2M driver. You can use
either the NI-488.2 language interface or the OS/2 API (Application Program
Interface) calls. Both methods access the NI-488.2M driver through the OS/2
system. The driver then accesses your GPIB hardware.

OS/2 System

NI-488.2M Driver

GPIB Hardware Interface

OR
User

Application
Program

IBIC
utility for using

NI-488.2 commands
interactively

NI-488.2 Language Interface

OR

User
Application
Program

OS/2 Application
Program
Interface

Figure 1-1. How the NI-488.2M Software Works with OS/2

Chapter 1 NI-488.2M Software Description

© National Instruments Corp. 1-5 NI-488.2M SRM for OS/2

The remainder of this chapter discusses the basics of GPIB and how to set up
your system. For application program examples, refer to Chapter 2, Application
Examples. For information about writing an application program, refer to
Chapter 3, Developing Your Application.

GPIB Overview

The following sections describe the elements of a GPIB system.

The IEEE 488 Standard and GPIB

The ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation, describes a standard interface for
communication between instruments and controllers from various vendors. It
contains information about electrical, mechanical, and functional specifications.
The ANSI/IEEE Standard 488.2-1987, Codes, Formats, Protocols, and
Common Commands, defines a bus communication protocol, a common set of
data codes and formats, and a generic set of common device commands.

The GPIB (General Purpose Interface Bus) is a digital, 8-bit parallel
communications interface with data transfer rates of 1 Mbytes/s and above. The
bus supports one System Controller, usually a computer, and up to 14 additional
instruments.

Talkers, Listeners, and Controllers

Devices on the GPIB can be Talkers, Listeners, or Controllers. A Talker sends
out data messages. Listeners receive data messages. The Controller, usually a
computer, manages the flow of information on the bus. It defines the
communication links and sends GPIB commands to devices.

Some devices are capable of playing more than one role. A digital voltmeter,
for example, can be a Talker and a Listener. If your personal computer has a
GPIB interface board and GPIB software installed, it can function as a Talker,
Listener, and Controller.

NI-488.2M Software Description Chapter 1

NI-488.2M SRM for OS/2 1-6 © National Instruments Corp.

Controller-In-Charge and System Controller

You can have multiple Controllers on the GPIB, but only one Controller at a
time can be the active Controller, or Controller-In-Charge (CIC). When a
Controller is not active, it is considered an idle Controller. Active control can
pass from the current CIC to an idle Controller. The System Controller, usually
a GPIB interface board, is the only device on the bus that can make itself the
CIC.

Sending Messages Across the GPIB

Devices on the bus communicate by sending messages. Signals and lines
transfer these messages across the GPIB interface, which consists of 16 signal
lines and 8 ground return (shield drain) lines. The 16 signal lines are discussed
in the following sections.

Data Lines

Eight data lines, DIO1 through DIO8, carry both data and command messages.

Handshake Lines

Three hardware handshake lines asynchronously control the transfer of message
bytes between devices. This process is a three-wire interlocked handshake, and
it guarantees that devices send and receive message bytes on the data lines
without transmission error. Table 1-1 summarizes the GPIB handshake lines.

Table 1-1. GPIB Handshake Lines

Line Description

NRFD (not ready for data) Listening device is ready/not ready to
receive a message byte.

NDAC (not data accepted) Listening device has/has not accepted a
message byte.

DAV (data valid) Talking device indicates signals on data
lines are stable (valid) data.

Chapter 1 NI-488.2M Software Description

© National Instruments Corp. 1-7 NI-488.2M SRM for OS/2

Interface Management Lines

Five GPIB hardware lines manage the flow of information across the bus.
Table 1-2 summarizes the GPIB interface management lines.

Table 1-2. GPIB Interface Management Lines

Line Description

ATN (attention) Controller drives ATN true when it sends
commands and false when it sends data
messages.

IFC (interface clear) System Controller drives the IFC line to
initialize the bus and make itself CIC.

REN (remote enable) System Controller drives the REN line to
place devices in remote or local program
mode.

SRQ (service request) Any device can drive the SRQ line to
asynchronously request service from the
Controller.

EOI (end or identify) Talker uses the EOI line to mark the end of
a data message. Controller uses the EOI
line when it conducts a parallel poll.

Setting Up and Configuring Your System

Devices are usually connected with a cable assembly consisting of a shielded
24-conductor cable with both a plug and receptacle connector at each end. With
this design, you can link devices in a linear configuration, a star configuration,
or a combination of the two. Figure 1-2 shows the linear and star
configurations.

NI-488.2M Software Description Chapter 1

NI-488.2M SRM for OS/2 1-8 © National Instruments Corp.

Device B

Device C

Device A
Linear

Configuration

Device D

Device CDevice B

Device A

Star
Configuration

Figure 1-2. Linear and Star System Configuration

Chapter 1 NI-488.2M Software Description

© National Instruments Corp. 1-9 NI-488.2M SRM for OS/2

Controlling More Than One Board

Multiboard drivers, such as the NI-488.2M driver for OS/2, can control more
than one interface board. Figure 1-3 shows an example of a multiboard system
configuration.

Printer

Plotter

Digital Voltmeter

gpib0

gpib1

One
GPIB

Another
GPIB

Figure 1-3. Example of Multiboard System Setup

gpib0 is the access board for the voltmeter, and gpib1 is the access board for
the plotter and printer. The control functions of the devices automatically access
their respective boards.

© National Instruments Corp. 2-1 NI-488.2M SRM for OS/2

Chapter 2
Application Examples

This chapter contains nine sample applications designed to illustrate specific
GPIB concepts and techniques that can help you write your own applications.
The description of each example includes the programmer’s task, a program
flowchart, and numbered steps that correspond to the numbered blocks on the
flowchart.

Use this chapter along with your distribution disk, which contains the
C source code for each of the nine examples. If you are new to GPIB
programming, you might want to study the contents and concepts of the
first sample, simple.c , before moving on to more complex examples.

• simple.c is the source code file for Example 1. It illustrates how you can
establish communication between a host computer and a GPIB device.

• clr_trg.c is the source code file for Example 2. It illustrates how you
can clear and trigger GPIB devices.

• asynch.c is the source code file for Example 3. It illustrates how you can
perform non-GPIB tasks while data is being transferred over the GPIB.

• eos.c is the source code file for Example 4. It illustrates the concept of the
end-of-string (EOS) character.

• rqs.c is the source code file for Example 5. It illustrates how you can
communicate with GPIB devices that use the GPIB SRQ line to request
service. This sample is written by using NI-488 functions.

• easy4882.c is the source code file for Example 6. It is an introduction to
NI-488.2 routines.

• rqs4882.c is the source code file for Example 7. It uses NI-488.2
routines to communicate with GPIB devices that use the GPIB SRQ line to
request service.

• ppoll.c is the source code file for Example 8. It uses NI-488.2 routines to
conduct parallel polls.

• non_cic.c is the source code file for Example 9. It illustrates how you
can use the NI-488.2M driver in a non-Controller application.

Application Examples Chapter 2

NI-488.2M SRM for OS/2 2-2 © National Instruments Corp.

Example 1: Basic Communication

This example focuses on the basics of establishing communication between a
host computer and a GPIB device.

A technician needs to monitor voltage readings using a GPIB multimeter. His
computer is equipped with an IEEE 488.2 interface board. The NI-488.2M
software is installed and a GPIB cable runs from the computer to the GPIB port
on the multimeter.

The technician is familiar with the multimeter remote programming command
set. This list of commands is specific to his multimeter and is available from the
multimeter manufacturer.

He sets up the computer to direct the multimeter to take measurements and record
each measurement as it occurs. To do this, he has written an application that uses
some simple high-level GPIB commands. The following steps correspond to the
program flowchart in Figure 2-1.

1. The application initializes the GPIB by bringing the interface board in the
computer online.

2. The application sends the multimeter an instruction, setting it up to take
voltage measurements in autorange mode.

3. The application sends the multimeter an instruction to take a voltage
measurement.

4. The application tells the multimeter to transmit the data it has acquired to the
computer.

The process of requesting a measurement and reading from the multimeter
(Steps 3 and 4) is repeated as long as there are readings to be obtained.

5. As a cleanup step before exiting, the application returns the interface board
back to its original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-3 NI-488.2M SRM for OS/2

Computer Multimeter

INIT

Read
Measurement

from Multimeter

Finished Getting
Measurements?

CLEAN UP

Yes

No

ibwrt

ibrd

"VOLTS?"Tell Multimeter to
Take Measurement

"+ 5 volts"

1

2

3

5

Set Up Multimeter
to Take Voltages

ibwrt

"VOLTS DC;AUTO"

4

GPIB Cable

Figure 2-1. Program Flowchart for Example 1

Application Examples Chapter 2

NI-488.2M SRM for OS/2 2-4 © National Instruments Corp.

Example 2: Clearing and Triggering Devices

This example illustrates how you can clear and trigger GPIB devices.

Two freshman physics lab partners are learning how to use a GPIB digital
oscilloscope. They have successfully loaded the NI-488.2M software on a
personal computer and connected their GPIB board to a GPIB digital
oscilloscope. Their current lab assignment is to write a small application to
practice using the oscilloscope and its command set using high-level GPIB
commands. The following steps correspond to the program flowchart in Figure
2-2.

1. The application initializes the GPIB by bringing the interface board in the
computer online.

2. The application sends a GPIB clear command to the oscilloscope. This
command clears the internal registers of the oscilloscope, reinitializing it to
default values and settings.

3. The application sends a command to the oscilloscope telling it to read a
waveform each time it is triggered. Predefining the task in this way
decreases the execution time required. Each trigger of the oscilloscope is
now sufficient to get a new run.

4. The application sends a GPIB trigger command to the oscilloscope. The
GPIB trigger command causes the oscilloscope to acquire data.

5. The application queries the oscilloscope for the acquired data. The
oscilloscope sends the data.

6. The application reads the data from the oscilloscope.

7. The application calls an external graphics routine to display the acquired
waveform.

Steps 4, 5, 6, and 7 are repeated until all the desired data has been acquired
by the oscilloscope and received by the computer.

8. As a cleanup step before exiting, the application returns the interface board
to its original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-5 NI-488.2M SRM for OS/2

GPIB Cable

Computer Oscilloscope

INIT

Trigger
Oscilloscope to

Get Reading

Finished
Reading?

CLEAN UP

Yes

No

ibclr

ibtrg

Clear
Command

Request Data
from

Oscilloscope
"CURV?"

Clear
Oscilloscope

ibwrt

Define Task to Be Done
When Oscilloscope is

Triggered

Trigger
Command

1

2

3

4

5

6
Read Data

from
Oscilloscope

 Display
Waveform

Data

7

8

"WAV=TRIG"

ibwrt

ibrd

Figure 2-2. Program Flowchart for Example 2

Application Examples Chapter 2

NI-488.2M SRM for OS/2 2-6 © National Instruments Corp.

Example 3: Asynchronous I/O

This example illustrates how an application conducts data transfers with a GPIB
device and immediately returns to perform other non-GPIB related tasks while
GPIB I/O is occurring in the background. This asynchronous mode of operation
is particularly useful when the requested GPIB activity may take some time to
complete.

In this example, a research biologist is trying to obtain accurate CAT scans of a
lab animal’s liver. She will print out a color copy of each scan as it is acquired.
The entire operation is computer controlled. The CAT scan machine sends the
images it acquires to a computer connected to a GPIB color printer and fitted
with the NI-488.2M software package. The biologist is familiar with the
command set of her color printer, as described in the user manual provided by the
manufacturer. She acquires and prints images with the aid of an application
program she wrote using high-level GPIB commands. The following steps
correspond to the program flowchart in Figure 2-3.

1. The application initializes the GPIB by bringing the interface board in the
computer online.

2. An image is scanned in.

3. The application sends the GPIB printer a command to print the new image
and immediately returns without waiting for the I/O operation to be
completed.

4. The application saves the image obtained to a file.

5. The application inquires as to whether the printing operation has completed
by issuing a GPIB wait command. If the status reported by the wait
command indicates completion (CMPL is in the status returned) and more
scans need to be acquired, Steps 2 through 5 are repeated until the scans have
all been acquired. If the status reported by the wait command in Step 5 does
not indicate that printing is finished, statistical computations are performed
on the scan obtained and Step 5 is repeated.

6. As a cleanup step before exiting, the application returns the interface board
back to its original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-7 NI-488.2M SRM for OS/2

Computer

INIT

Print Image
Asynchronously

CLEAN UP

Non-GPIB
Activity: Save

to Disk

Color Printer

Print Image

Image
Scan

Non-GPIB Activity:
Compute Statistics

More
Images?

Yes

No

Yes

No

ibwrta

1

2

3

4

5

6

GPIB Cable

Is GPIB
Printing
Done?

ibwait

Figure 2-3. Program Flowchart for Example 3

Application Examples Chapter 2

NI-488.2M SRM for OS/2 2-8 © National Instruments Corp.

Example 4: End-of-String Mode

This example illustrates how to use the end-of-string modes to detect that the
GPIB device has finished sending data.

A journalist is using a GPIB scanner to scan some pictures into his personal
computer for a news story. A GPIB cable runs between the scanner and the
computer. He is using an application written by an intern in the department who
has read the instruction manual provided by the scanner manufacturer and is
familiar with its programming requirements. The following steps correspond to
the program flowchart in Figure 2-4.

1. The application initializes the GPIB by bringing the interface board in the
computer online.

2. The application sends a GPIB clear message to the scanner, initializing it to
its power-on defaults.

3. The scanner needs to see a delimiter indicating the end of a command. In
this case, the scanner expects the commands to be terminated with
<CR><LF> (carriage return, \r , and linefeed, \n). The application sets its
end-of-string (EOS) byte to <LF>. The linefeed code indicates to the
scanner that there is no more data coming, and is called the end-of-string
byte. It flags an end-of-string condition for this particular GPIB scanner.
The same effect could be accomplished by asserting the EOI line when the
command is sent.

4. With the exception of the scan resolution, all the default settings are
appropriate for the task at hand. The application changes the scan resolution
by writing the appropriate command to the scanner.

5. The scanner sends back information describing the status of the change
resolution command. This is a string of bytes terminated by the
end-of-string character to tell the application it is done changing the
resolution.

6. The application starts the scan by writing the scan command to the scanner.

7. The application reads the scan data into the computer.

8. As a cleanup step before exiting, the application returns the interface board
back to its original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-9 NI-488.2M SRM for OS/2

Read Status

Computer Scanner

INIT

Set EOS
Mode

CLEAN UP

ibclr

ibeos

Change
Scan

Resolution

Reset
Internal
State

"RES:3 \ r \ n"

ibwrt

Read
Data

ibwrt

ibrd

Start Scan

"OK"

"scan \ r \ n"

Scanned
Data

ibrd

1

2

3

4

5

6

7

8

Clear
Command

GPIB Cable

Figure 2-4. Program Flowchart for Example 4

Application Examples Chapter 2

NI-488.2M SRM for OS/2 2-10 © National Instruments Corp.

Example 5: Service Requests

This example illustrates how an application communicates with a GPIB device
that uses the GPIB service request (SRQ) line to indicate that it needs attention.

A graphic arts designer is transferring digital images stored on her computer to a
roll of color film by using a GPIB digital film recorder. A GPIB cable connects
the GPIB port on the film recorder to the IEEE 488.2 interface board installed in
her computer. She has installed the NI-488.2M software package on the host
computer and is familiar with the programming instructions for the film recorder,
as described in the user manual provided by the manufacturer. She places a fresh
roll of film in the camera and launches a simple application she has written using
high-level GPIB commands. With the aid of the application, she records a few
images on film. The following steps correspond to the program flowchart in
Figure 2-5.

1. The application initializes the GPIB by bringing the interface board in the
computer online.

2. The application brings the film recorder to a ready state by issuing a device
clear instruction. The film recorder is now set up for operation using its
default values. (The graphic arts designer has previously established that the
default values for the film recorder are appropriate for the type of film she is
using.)

3. The application advances the new roll of film into position so the first image
can be exposed on the first frame of film. This is done by sending the
appropriate instructions as specified in the film recorder programming guide.

4. The application, by waiting for RQS (request for service), waits for the film
recorder to signify that it is done loading the film. The film recorder asserts
the GPIB SRQ line when it has finished loading the film.

5. As soon as the film recorder asserts the GPIB SRQ line, the application’s
wait for the RQS event completes. The application serial polls the device by
sending a special command message to the film recorder that directs it to
return a response in the form of a serial poll status byte. This byte contains
information indicating what kind of service the film recorder is requesting or
what condition it is flagging. In this example, it indicates the completion of
a command.

Chapter 2 Application Examples

© National Instruments Corp. 2-11 NI-488.2M SRM for OS/2

6. A color image transfers to the digital film recorder in three consecutive
passes—one pass each for the red, green and blue components of the image.
Sub-steps a, b, and c are repeated for each of the passes:

a. The application sends a command to the film recorder, directing it to
accept data to create a single pass image. The film recorder asserts the
SRQ line as soon as a pass is completed.

b. The application waits for RQS.

c. When the SRQ line is asserted, the application serial polls the film
recorder to see whether it requested service, as in Step 5.

7. The application issues a command to the film recorder to advance the film by
one frame. The advance occurs successfully unless the end of film is
reached.

8. The application waits for RQS, which completes when the film recorder
asserts the SRQ line to signal it is done advancing the film.

9. As soon as the application’s wait for RQS completes, the application serial
polls the film recorder to see whether it requested service, as in Step 5. The
returned serial poll status byte indicates either of two conditions: the film
recorder finished advancing the film, as requested, or the end of film was
reached and it can no longer advance. Steps 6 through 9 are repeated as long
as film is in the camera and more images need to be recorded.

10. As a cleanup step before exiting, the application returns the interface board
back to its original state by taking it offline.

Application Examples Chapter 2

NI-488.2M SRM for OS/2 2-12 © National Instruments Corp.

GPIB Cable

Computer Digital Film Recorder

INIT

Wait for the
Film Recorder to
Request Service

Finished
Loading

Film?

ibclr

ibwait

"FRM+"

Read
Response from

the Film
Recorder

Response

Advance
Film

Clear Film Recorder Clear Command

ibrsp

1

2

4

3

5

No

ibwrt

YesExit Application
and Repair

Film Recorder

Request
Service

Did You Request
Service ?

Yes

(continues)

Figure 2-5. Program Flowchart for Example 5

Chapter 2 Application Examples

© National Instruments Corp. 2-13 NI-488.2M SRM for OS/2

(Continued)

CLEAN UP

Yes

Wait for Film
Recorder to

Request
Service

Create a
Single Pass

Image

Read Response
From Film
Recorder

ibrsp

Wait for Film
Recorder to

Request
Service

Advance Film

Read Response From
Film Recorder

6

6a

6b

6c

7

8

9

10

Yes

ibwait
These steps
are repeated 3
times, once for
each color
pass

ibwrt

ibwait

Reached
End of
Film?No

Computer Digital Film Recorder

ibrsp

ibwrt

Data for Red, Green,
or Blue Pass

Request
Service

Did You Request
Service?

Yes

Response

 "ADV"

Request
Service

Did You Request
Service?

Yes

Response

Figure 2-5. Program Flowchart for Example 5 (Continued)

Application Examples Chapter 2

NI-488.2M SRM for OS/2 2-14 © National Instruments Corp.

Example 6: Basic Communication with
IEEE 488.2 Compliant Devices

This example provides an introduction to communicating with IEEE 488.2
compliant devices.

A test engineer in a metal factory is using IEEE 488.2 compliant tensile testers to
find out the strength of metal rods as they come out of production. There are
several tensile testers and they are all connected to a central computer equipped
with an IEEE 488.2 interface board. These machines are fairly voluminous and it
is difficult for the engineer to reach the address switches of each machine. For
the purposes of his future work with these tensile testers, he needs to determine
what GPIB addresses they have been set to. He can do so with the aid of a simple
application he has written. The following steps correspond to the program
flowchart in Figure 2-6.

1. The application initializes the GPIB by bringing the interface board in the
computer online.

2. The application issues a command to detect the presence of listening devices
on the GPIB and compiles a list of the addresses of all such devices.

3. The application sends an identification query (“*IDN?”) to a device
detected on the GPIB in Step 2.

4. The application reads the identification information returned by the device as
it responds to the query in Step 3.

Steps 3 and 4 are repeated for each of the devices detected in Step 2.

5. As a cleanup step before exiting, the application returns the interface board
back to its original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-15 NI-488.2M SRM for OS/2

Computer Tensile Tester 1

INIT

Tell Device to
Identify Itself

CLEAN UP

FindLstn

Send

 "*IDN?"

Receive

Tensile Tester 2 Tensile Tester 3

Who's
Listening?

Get a List
of Devices
Present on

GPIB

Device 1
is Here

Device 2
is Here

Device 3
is Here

"MUTT 10426"

"MUTT 10528"

1

2

3

4

5

"MUTT 10383"

GPIB Cable GPIB Cable GPIB Cable

Receive

Receive

Read
Response

from
Device 2

Read
Response

from
Device 3

Tell Device
2 to Identify

Itself

Tell Device
3 to Identify

Itself

Send

Send

 "*IDN?"

 "*IDN?"

Read
Response

from
Device 1

3

4

3

4

Figure 2-6. Program Flowchart for Example 6

Application Examples Chapter 2

NI-488.2M SRM for OS/2 2-16 © National Instruments Corp.

Example 7: Serial Polls Using NI-488.2 Routines

This example illustrates how you can take advantage of the NI-488.2 routines to
reduce the complexity of performing serial polls of multiple devices.

A candy manufacturer is using GPIB strain gauges to measure the consistency of
the syrup used to make candy. The plant has four big mixers containing syrup.
The syrup has to reach a certain consistency to make good quality candy. The
consistency is measured by strain gauges that monitor the amount of pressure
used to move the mixer arms. When a certain consistency is reached, the mixture
is removed and a new batch of syrup is poured in the mixer. The GPIB strain
gauges are connected to a computer equipped with an IEEE 488.2 interface board
and fitted with the NI-488.2M software. The process is controlled by an
application that uses NI-488.2 routines to communicate with the IEEE 488.2
compliant strain gauges. The following steps correspond to the program
flowchart in
Figure 2-7.

1. The application initializes the GPIB by bringing the interface board in the
computer online.

2. The application configures the strain gauges to request service when they
have a significant pressure reading or a mechanical failure occurs. They
signal their request for service by asserting the SRQ line.

3. The application waits for one or more of the strain gauges to indicate that
they have a significant pressure reading. This wait event ends as soon as the
SRQ line is asserted.

4. The application serial polls each strain gauge to see if it requested service.

5. Once the application has determined which strain gauge requires service, it
takes a reading from that strain gauge.

6. If the reading matches the desired consistency, a dialog window appears on
the computer screen and prompts the mixer operator to remove the mixture
and start a new batch. Otherwise, a dialog window prompts the operator to
service the mixer in some other way.

Steps 3 through 6 are repeated as long as the mixers are in operation.

7. After the last batch of syrup has been processed, the application returns the
interface board to its original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-17 NI-488.2M SRM for OS/2

Computer Strain
Gauge 1

INIT

CLEAN UP

SendList

WaitSRQ

FindRQS

Strain
Gauge 2

Strain
Gauge 3

Request
Service

Receive

Done for
the

Day?

1

7

GPIB Cable GPIB CableGPIB Cable

Yes

No

Wait for 1 or More
Strain Gauges to
Request Service

3

No
Did You Request

Service?

Did You Request
Service?

Yes

Serial Poll Each
Strain Gauge

Until One
Requesting
Service is
Located

4

Response
Get a Reading

From Strain
Gauge

5

No

Yes

Provide
Whatever
Service is
Required

Does the
Gauge Need

Service?

6

Mixture is Ready.
Display "Remove

Mixture"
Message

"SRQ=HI"

Configure Strain
Gauges to

Request Service
When They

Have a Reading

2

Figure 2-7. Program Flowchart for Example 7

Application Examples Chapter 2

NI-488.2M SRM for OS/2 2-18 © National Instruments Corp.

Example 8: Parallel Polls

This example illustrates how you can use NI-488.2 routines to obtain information
from several IEEE 488.2 compliant devices at once by using a procedure called
parallel polling.

The process of manufacturing a particular alloy involves bringing three different
metals to specific temperatures before mixing them to form the alloy. Three vats
are used, each containing a different metal. Each is monitored by a GPIB ore
monitoring unit. The monitoring unit consists of a GPIB temperature transducer
and a GPIB power supply. The temperature transducer is used to probe the
temperature of each metal. The power supply is used to start a motor to pour the
metal into the mold when it reaches a predefined temperature. The three
monitoring units are connected to the IEEE 488.2 interface board of a computer
fitted with the NI-488.2M software and operated by an application using NI-
488.2 routines. The application obtains information from the multiple units by
conducting a parallel poll, then determines when to pour the metals into the
mixture tank. The following steps correspond to the program flowchart in Figure
2-8.

1. The application initializes the GPIB by bringing the interface board in the
computer online.

2. The application configures the temperature transducer in the first monitoring
unit by choosing which of the eight GPIB data lines the transducer uses to
respond when a parallel poll is conducted. The application also sets the
temperature threshold. The transducer manufacturer has defined the
individual status (ist) bit to be true when the temperature threshold is
reached, and the configured status mode of the transducer is assert the data
line. When a parallel poll is conducted, the transducer asserts its data line if
the temperature has exceeded the threshold.

3. The application configures the temperature transducer in the second
monitoring unit for parallel polls.

4. The application configures the temperature transducer in the third monitoring
unit for parallel polls.

5. The application conducts non-GPIB activity while the metals are heated.

Chapter 2 Application Examples

© National Instruments Corp. 2-19 NI-488.2M SRM for OS/2

6. The application conducts a parallel poll of all three temperature transducers
to determine whether the metals have reached the appropriate temperature.
Each transducer asserts its data line during the configuration step if its
temperature threshold has been reached.

7. If the response to the poll indicates that all three metals are at the appropriate
temperature, the application sends a command to each of the three power
supplies, directing them to power on. Then the motors start and the metals
pour into the mold.

If only one or two of the metals is at the appropriate temperature,
Steps 5 and 6 are repeated until the metals can be successfully mixed.

8. The application unconfigures all the transducers so that they no longer
participate in parallel polls.

9. As a cleanup step before exiting, the application returns the interface board
back to its original state by taking it offline.

Application Examples Chapter 2

NI-488.2M SRM for OS/2 2-20 © National Instruments Corp.

Computer

INIT

CLEAN UP

PPollConfig

Configure
Transducer 3

for Parallel Polls

Non-GPIB
Activity

Parallel Poll
Enable

Start Power
Supplies

No

Temp
Transducer

Yes

1

2

3

4

5

6

7

9

PPollConfig

PPollConfig

 PPoll
Unconfigure8

PPoll

"MIX ON"
SendList

PPollUnconfig

Power
Supply

Configure
Transducer 2

for Parallel Polls

Configure
Transducer 1 for

Parallel Polls

UNIT 1

GPIB
CableGPIB Cable

GPIB
Cable

GPIB
Cable

GPIB
Cable

GPIB
Cable

Are All
Metals
Ready?

Yes

Temp
Transducer

Power
Supply

UNIT 2
Temp

Transducer
Power
Supply

UNIT 3

Parallel Poll
Enable

YesYes

Parallel Poll
Enable

Parallel Poll

Parallel Poll
Disable

Figure 2-8. Program Flowchart for Example 8

Chapter 2 Application Examples

© National Instruments Corp. 2-21 NI-488.2M SRM for OS/2

Example 9: Non-Controller Example

This example illustrates how you can use the NI-488.2M software to emulate a
GPIB device that is not the GPIB Controller.

A software engineer has written firmware to emulate a GPIB device for a
research project and is testing it by using an application that makes simple GPIB
calls. The following steps correspond to the program flowchart in Figure 2-9.

1. The application brings the device online.

2. The application waits for any of three events to occur: the device becomes
listen addressed, becomes talk addressed, or receives a GPIB clear message.

3. As soon as one of the events occurs, the application takes an action based
upon the event that occurred. If the device was cleared, the application
resets the internal state of the device to default values. If the device is talk
addressed, it writes data back to the Controller. If the device is listen
addressed, it reads in new data from the Controller.

Application Examples Chapter 2

NI-488.2M SRM for OS/2 2-22 © National Instruments Corp.

Device Controller

INIT

Wait to be Talk
Addressed,

Listen
Addressed, or

Cleared

Write Out
New Data

No

ibwait

fffffffffff

Is This the
Clear Event?

Is This the
Talk

Addressed
Event?

Reset
Internal
State Yes

Yes

Data

No

Read In
New Data

Data

ibwrt

ibrd

1

2

3

3

3

Figure 2-9. Program Flowchart for Example 9

© National Instruments Corp. 3-1 NI-488.2M SRM for OS/2

Chapter 3
Developing Your Application

This chapter explains how to develop a GPIB application program using NI-488
functions and NI-488.2 routines.

Choosing a Programming Method

Programs that need to communicate across the GPIB can access the NI-488.2M
driver using either the NI-488.2 language interface or the OS/2 API calls.

Using the NI-488.2 Language Interface

One method of programming the NI-488.2M driver is with an NI-488.2
language interface using functions defined by National Instruments. The NI-488
functions and NI-488.2 routines are an industry standard and are portable across
many computer platforms and operating systems. In most cases, you should use
these functions and routines because they are designed to make GPIB
programming easier. You also should use them if you are already using other
National Instruments GPIB products, because the same format and syntax work
regardless of the GPIB hardware product. You can make NI-488 or NI-488.2
calls in the ibic interactive program or from your application program.

When using the NI-488.2 interface, your OS/2 application runs with both the
AT-GPIB driver for OS/2 and MC-GPIB driver for OS/2 without modification
or recompiling. Also, multiple applications can share the same library. The NI-
488.2M software for OS/2 includes language interface libraries for IBM CSet,
Borland C/C++ for OS/2, and Microsoft C 6.0. If you are not programming with
one of these languages, you should use the OS/2 API interface.

Your distribution disk contains two distinct sets of subroutines to meet your
application needs. Both of these sets, the NI-488 functions and the NI-488.2
routines, are compatible across computer platforms and operating systems, so
you can port programs to other platforms with little or no source code

Developing Your Application Chapter 3

NI-488.2M SRM for OS/2 3-2 © National Instruments Corp.

modification. For most application programs, the NI-488 functions are
sufficient. You should use the NI-488.2 routines if you have a complex
configuration with one or more interface boards and multiple devices.
Regardless of which option you choose, the driver automatically addresses and
performs other bus management operations necessary for device communication.

The following sections discuss some differences between NI-488 functions and
NI-488.2 routines.

Using NI-488 Functions: One Device for Each Board

If your system has only one device attached to each board, the NI-488 functions
are probably sufficient for your programming needs. Some other factors that
make the NI-488 functions more convenient include the following:

• With NI-488 asynchronous I/O functions (ibcmda , ibrda , and ibwrta),
you can initiate an I/O sequence while maintaining control over the CPU for
non-GPIB tasks.

• NI-488 functions include built-in file transfer functions (ibrdf and
ibwrtf).

• The NI-488 function ibconfig dynamically changes the GPIB driver
configuration without the need to run the ibconf utility.

• With NI-488 functions, you can control the bus in non-typical ways or
communicate with noncompliant devices.

The NI-488 functions consist of high-level (or device) functions that hide much
of the GPIB management operations and low-level (or board) functions that offer
you more control over the GPIB than NI-488.2 routines. The following sections
describe these different function types.

 NI-488 Device-Level Functions

Device-level functions are high-level functions that automatically execute
commands that handle bus management operations such as reading from
and writing to devices or polling them for status. If you use device-level
functions, you do not need to understand GPIB protocol or bus management.
For information about device-level calls and how they manage the GPIB, refer to
Device-Level Calls and Bus Management, in Chapter 6, GPIB Programming
Techniques.

Chapter 3 Developing Your Application

© National Instruments Corp. 3-3 NI-488.2M SRM for OS/2

 NI-488 Board-Level Functions

Board-level functions are low-level functions that perform rudimentary GPIB
operations. Board-level functions access the interface board directly and require
you to handle the addressing and bus management protocol.
In cases when the device-level functions might not meet your needs,
board-level functions give you the flexibility and control to handle situations
such as the following:

• Communicating with noncompliant (non-IEEE 488.2) devices

• Altering various low-level board configurations

• Managing the bus in non-typical ways

The NI-488 board-level functions are compatible with, and can be interspersed
within, sequences of NI-488.2 routines. When you use
board-level functions within a sequence of NI-488.2 routines, you do not need a
prior call to ibfind . You simply substitute the board index as
the first parameter of the board-level function call. With this flexibility, you can
handle non-standard or unusual situations that you cannot resolve using
NI-488.2M routines only.

Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices

When your system includes a board that must access more than one device, use
the NI-488.2 routines. NI-488.2 routines can perform the following tasks with a
single call:

• Find all of the Listeners on the bus

• Configure the attached instruments

• Find a device requesting service

• Determine the state of the SRQ line

• Wait for SRQ to be asserted

• Address multiple devices

Developing Your Application Chapter 3

NI-488.2M SRM for OS/2 3-4 © National Instruments Corp.

• Specify board index, GPIB address, and termination parameters so that you
do not need to remember device names, unit descriptors, or termination
modes separately

• Use routine names that are descriptive of their purpose

Using the OS/2 API Interface

If the NI-488.2 interface does not meet your requirements, you can access the
NI-488.2M driver through the OS/2 API interface. This interface uses the OS/2
standard device driver interface instead of a particular language interface.
Because this interface is supported by all devices, you can use it with all
development environments. Using the API interface, however, is not as easy as
using the NI-488.2 interface. Refer to Chapter 3, Application Program Interface
Function, in the NI-488.2M Function Reference Manual for OS/2, for more
information about the API functions.

Checking Status with Global Variables

Each NI-488 function and NI-488.2 routine updates the global variables to reflect
the status of the device or board that you are using. The status word (ibsta),
the error variable (iberr), and the count variables (ibcnt and ibcntl)
contain useful information about the performance of your application program.
Your program should check these variables frequently. The following sections
describe each of these global variables and how you can use them in your
application program.

Status Word—ibsta

All functions update a global status word, ibsta , which contains information
about the state of the GPIB and the GPIB hardware. The value stored in ibsta
is the return value of all NI-488 functions except ibfind and ibdev . You can
test for the conditions reported in ibsta and use that information to make
decisions about continued processing. Also, if you check for possible errors after
each call, debugging your application is much easier.

ibsta is a 16-bit value. A bit value of 1 indicates that a certain condition is in
effect. A bit value of 0 indicates that the condition is not in effect. Each bit in
ibsta can be set for device calls (dev), board calls (brd), or both (dev, brd).

Chapter 3 Developing Your Application

© National Instruments Corp. 3-5 NI-488.2M SRM for OS/2

Table 3-1 shows the condition that each bit position represents, the mnemonic
representation of each bit, and the type of calls for which the bit is set. For a
detailed explanation of each of the status conditions, refer to Appendix A, Status
Word Conditions.

Mnemonic
Bit
Pos.

Hex
Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

The language header files included on your distribution disk contain the
mnemonic constants for ibsta . You can check a bit position in ibsta by
using its numeric value or its mnemonic constant. For example, bit position 15
(hex 8000) detects a GPIB error. The mnemonic for this bit is ERR. To check
for a GPIB error, use either of the following statements after each NI-488
function and NI-488.2 routine:

if (ibsta & ERR) gpiberr();

or

if (ibsta & 0x8000) gpiberr();

where gpiberr() is an error-handling routine that you have defined.

Table 3-1. Status Word (ibsta) Layout

Developing Your Application Chapter 3

NI-488.2M SRM for OS/2 3-6 © National Instruments Corp.

Error Variable—iberr

If the ERR bit is set in the status word (ibsta), a GPIB error has occurred.
When an error occurs, the error type is specified by the value in iberr .

Note: The value in iberr is meaningful as an error type only when the
ERR bit is set, indicating that an error has occurred.

For more information on error codes and solutions, refer to Chapter 4,
Debugging Your Application, or Appendix B, Error Codes and Solutions.

Count Variables—ibcnt and ibcntl

The count variables are updated after each read, write, or command function.
ibcnt is a 16-bit integer and ibcntl is a 32-bit integer. If you are reading
data, the count variables indicate the number of bytes read. If you are sending
data or commands, the count variables reflect the number of bytes sent.

In your application program, you can use the count variables to null-terminate an
ASCII string of data received from an instrument. For example, if data is
received in an array of characters, you can use ibcntl to null-terminate the
array and print the measurement on the screen as follows:

char rdbuf[512];
ibrd (ud, rdbuf, 20L);
if (!(ibsta & ERR)){

rdbuf[ibcntl] = '\0';
printf ("Read: %s\n", rdbuf);

}
else {

error();
}

ibcntl is the number of bytes received. Data begins in the array at
index 0; therefore, ibcntl is the position for the null character that marks the
end of the string.

Chapter 3 Developing Your Application

© National Instruments Corp. 3-7 NI-488.2M SRM for OS/2

Using ibic to Communicate with Devices
Before you begin writing your application program, you might want to use the
ibic utility. With ibic (Interface Bus Interactive Control), you communicate
with your instruments from the keyboard rather than from an application
program. You can use ibic to learn to communicate with your instruments
using the NI-488 functions or NI-488.2 routines. For specific device
communication instructions, refer to the user manual that came with your
instrument. For information about using ibic and for detailed examples, refer
to Chapter 5, ibic—Interface Bus Interactive Control Utility.

After you have learned how to communicate with your devices in ibic , you are
ready to begin writing your application program.

Writing Your NI-488 Application

This section discusses items you should include in your application program,
general program steps, and examples.

Items to Include

• Include the GPIB header file. This file contains prototypes for the
NI-488 functions and constants that you can use in your application
program. Include the declaration file appropriate for your compiler as
follows:

#include "decl.h" /* 32-bit C compiler */

#include "decl_16.h" /* 16-bit C compiler */

• Check for errors after each NI-488 function call.

• Declare and define a function to handle GPIB errors. This function takes the
device offline and closes the application. If the function is declared as
follows

void gpiberr (char *msg); /* function prototype */

your application invokes the function as follows

 if (ibsta & ERR) {
gpiberr("GPIB error");

}

Developing Your Application Chapter 3

NI-488.2M SRM for OS/2 3-8 © National Instruments Corp.

NI-488 Program Shell

Figure 3-1 is a flowchart of the steps to create your application program using
NI-488 functions. The flowchart is for device-level calls.

No

Yes

No

No

Closed All
Boards/Devices?

Yes

START

or
Open Board/Device by Specifying Name (ibfind)

Open Device without Knowing Device Name (ibdev)

Are All
Boards/Devices

Open?

Make a Device-Level Call
• Send Data to Device
• Receive Data from Device
• Clear Device
• Serial Poll Device
 and so on

(ibwrt)
(ibrd)

(ibclr)
(ibrsp)

Finished GPIB
Programming?

Close Board or Device (ibonl)

END

Yes

Figure 3-1. General Program Shell Using NI-488 Device Functions

Chapter 3 Developing Your Application

© National Instruments Corp. 3-9 NI-488.2M SRM for OS/2

General Program Steps and Examples

The following steps demonstrate how to use the NI-488 device functions in your
program. This example configures a digital multimeter, reads 10 voltage
measurements, and computes the average of these measurements.

Step 1. Open a Device

Your first NI-488 function call should be to ibfind or ibdev to open a
device.

ud = ibdev(0, 1, 0 , 12, 1, 0);

if (ibsta & ERR) {
 gpiberr("ibdev error");
}

The input arguments of the ibdev function are as follows:

0 – Board index for gpib0

1 – Primary GPIB address of the device

0 – No secondary GPIB address for the device

12 – I/O timeout value (3 s)

1 – Send END message with the last byte when writing to the device

0 – Disable EOS detection mode

When you call ibdev , the driver automatically initializes the GPIB by sending
an Interface Clear (IFC) message and placing the device in the remote
programming state.

Developing Your Application Chapter 3

NI-488.2M SRM for OS/2 3-10 © National Instruments Corp.

Step 2. Clear the Device

Clear the device before you configure the device for your application. Clearing
the device resets its internal functions to a default state.

ibclr(ud);
if (ibsta & ERR) {

gpiberr("ibclr error");
}

Step 3. Configure the Device

After you open and clear the device, it is ready to receive commands. To
configure the instrument, you send device-specific commands using the ibwrt
function. Refer to the instrument user manual for the command bytes that work
with your instrument.

ibwrt(ud, "*RST; VAC; AUTO; TRIGGER 2; *SRE 16", 35L);
if (ibsta & ERR) {

gpiberr("ibwrt error");
}

The programming instruction in this example resets the multimeter (*RST). The
meter is instructed to measure the volts alternating current (VAC) using
autoranging (AUTO), to wait for a trigger from the GPIB interface board before
starting a measurement (TRIGGER 2), and to assert the SRQ line when the
measurement completes and the multimeter is ready to send the result (*SRE
16).

Step 4. Trigger the Device

If you configure the device to wait for a trigger, you must send a trigger
command to the device before reading the measurement value. Next, you must
instruct the device to send the next triggered reading to its GPIB output buffer.

ibtrg(ud);
if (ibsta & ERR) {

gpiberr("ibtrg error");
}

Chapter 3 Developing Your Application

© National Instruments Corp. 3-11 NI-488.2M SRM for OS/2

ibwrt(ud,"VAL1?", 5L);
if (ibsta & ERR) {

gpiberr("ibwrt error");
}

Step 5. Wait for the Measurement

After you trigger the device, the RQS bit is set when the device is ready to send
the measurement. You can detect RQS by using the ibwait function. The
second parameter indicates what you are waiting for. Notice that the ibwait
function also returns when the I/O timeout value is exceeded.

printf("Waiting for RQS...\n");
if (ibwait (ud, TIMO| RQS) & (ERR | TIMO)) {

gpiberr("ibwait error");
}

When SRQ has been detected, serial poll the instrument to determine whether the
measured data is valid or whether a fault condition exists. For IEEE 488.2
instruments, you can find out by checking the message available (MAV) bit,
which is bit 4 in the status byte that you receive from the instrument.

ibrsp (ud, &StatusByte);
if (ibsta & ERR) {

gpiberr("ibrsp error");
}

if (!(StatusByte & MAVbit)) {
gpiberr("Improper Status Byte");
printf(" Status Byte = 0x%x\n", StatusByte);

}

Developing Your Application Chapter 3

NI-488.2M SRM for OS/2 3-12 © National Instruments Corp.

Step 6. Read the Measurement

If the data is valid, read the measurement from the instrument.
(AsciiToFloat is a function that takes a null-terminated string as input and
outputs the floating point number it represents.)

ibrd (ud, rdbuf, 10L);
if (ibsta & ERR) {

gpiberr("ibrd error");
}

rdbuf[ibcntl] = '\0';
printf("Read: %s\n", rdbuf);

 /* Output ==> Read: +10.98E-3 */

sum += AsciiToFloat(rdbuf);

Step 7. Process the Data

Repeat Steps 4 through 6 in a loop until 10 measurements have been read, then
print the average of the readings as shown:

printf("The average of the 10 readings is %f\n",
 sum/10.0);

Step 8. Place the Device Offline

As a final step, take the device offline by using the ibonl function.

ibonl (ud, 0);

Chapter 3 Developing Your Application

© National Instruments Corp. 3-13 NI-488.2M SRM for OS/2

Writing Your NI-488.2 Application

This section discusses items you should include in an application program that
uses NI-488.2 routines, general program steps, and examples.

Items to Include

• Include the GPIB header file. This file contains prototypes for the NI-488.2
routines and constants that you can use in your application program. Include
the declaration file appropriate for your compiler as follows:

#include "decl.h" /* 32-bit C compiler */

#include "decl_16.h"/* 16-bit C compiler */

• Check for errors after each NI-488.2 routine.

• Declare and define a function to handle GPIB errors. This function takes the
board offline and closes the application. If the function is declared as
follows

void gpiberr (char *msg); /* function prototype */

your application invokes the function as follows

if (ibsta & ERR) {
gpiberr("GPIB error");

}

Developing Your Application Chapter 3

NI-488.2M SRM for OS/2 3-14 © National Instruments Corp.

NI-488.2 Program Shell

Figure 3-2 is a flowchart of the steps to create your application program using
NI-488.2 routines.

No

END

Make a High-Level CallMake a Low-Level Call

No

• Send Data to Device (Send)
• Receive Data from Device
 (Receive)
• Clear Device (DevClear)
• Serial Poll Device
 (ReadStatusByte)
 and so on

• Address Devices to Listen (SendSetup)
• Send Data to Addressed Listener
 (SendDataBytes)
• Address Device to Talk (ReceiveSetup)
• Receive Data from Addressed Talker
 (RcvRespMsg)
 and so on

Low-Level High-Level

Yes

Close Board
(ibonl)

Are All Boards
Closed?

Finished GPIB
Programming?

Making
High-Level or

Low-Level Call?

Initialize Specified GPIB
Interface (SendIFC)

START

Yes

Are All Boards
Open?

Yes

No

Figure 3-2. General Program Shell Using NI-488.2 Routines

Chapter 3 Developing Your Application

© National Instruments Corp. 3-15 NI-488.2M SRM for OS/2

General Program Steps and Examples

The following steps demonstrate how to use the NI-488.2 routines in your
program. This example configures a digital multimeter, reads 10 voltage
measurements, and computes the average of these measurements.

Step 1. Initialization

Use the SendIFC routine to initialize the bus and the GPIB interface board so
that the GPIB board is CIC. The only argument of SendIFC is the GPIB
interface board number.

SendIFC(0);
if (ibsta & ERR) {

gpiberr("SendIFC error");
}

Step 2. Find All Listeners

Create an array of all the instruments attached to the GPIB. Use the FindLstn
routine. The first argument is the interface board number, the second argument
is the list of instruments that was created, the third argument is a list of
instrument addresses that the procedure actually found, and the last argument is
the maximum number of devices that the procedure may find (that is, it must
stop if it reaches the limit). The end of the list of addresses must be marked with
the NOADDR constant, which is defined in the header file that you included at the
beginning of the program.

for (loop = 0; loop <=30; loop++){
instruments[loop] = loop;

}
instruments[31] = NOADDR;

printf("Finding all Listeners on the bus...\n");

Findlstn(0, instruments, result, 30);
if (ibsta & ERR) {

gpiberr("FindLstn error");
}

Developing Your Application Chapter 3

NI-488.2M SRM for OS/2 3-16 © National Instruments Corp.

Step 3. Identify the Instrument

Send an identification query to each device for identification. For this example,
assume that all the instruments are IEEE 488.2 compatible and can accept the
identification query, *IDN? . In addition, assume that FindLstn found the
GPIB interface board at primary address 0 (default) and, therefore, you can skip
the first entry in the result array.

for (loop = 1; loop <= num_Listeners; loop++) {
Send(0, result[loop], "*IDN?", 5L, NLend);
if (ibsta & ERR) {

gpiberr("Send error");
}

Receive(0, result[loop], buffer, 10L, STOPend);
 if (ibsta & ERR) {

gpiberr("Receive error");
}

buffer[ibcntl] = '\0';
printf("The instrument at address %d is a %s\n",

 result[loop], buffer);
if (strncmp(buffer, "Fluke, 45", 9) == 0) {

fluke = result[loop];
printf("**** Found the Fluke ****\n");
break;

}
}

if (loop > num_Listeners) {
printf("Did not find the Fluke!\n");

}

The constant NLend signals that the new line character with EOI is
automatically appended to the data to be sent.

The constant STOPend indicates that the read is stopped when EOI is detected.

Chapter 3 Developing Your Application

© National Instruments Corp. 3-17 NI-488.2M SRM for OS/2

Step 4. Initialize the Instrument

After you find the multimeter, use the DevClear routine to clear it. The first
argument is the GPIB board number. The second argument is the GPIB address
of the multimeter. Next, send the IEEE 488.2 Reset command to the meter.

DevClear(0, fluke);
if (ibsta & ERR) {

gpiberr("DevClear error")
}

Send(0, fluke, "*RST", 4L, NLend);
if (ibsta & ERR) {

gpiberr("Send *RST error");
}

Step 5. Configure the Instrument

After initialization, the instrument is ready to receive instructions. To configure
the multimeter, use the Send routine to send device-specific commands. The
first argument is the number of the access board. The second argument is the
GPIB address of the multimeter. The third argument is a string of bytes to send
to the multimeter.

The bytes in this example instruct the meter to measure volts alternating current
(VAC) using autoranging (AUTO), to wait for a trigger from the Controller
before starting a measurement (TRIGGER 2), and to assert SRQ when the
measurement has been completed and the meter is ready to send the result
(*SRE 16). The fourth argument represents the number of bytes to be sent.
The last argument, NLend, is a constant defined in the header file that tells
Send to append a linefeed character with EOI asserted to the end of the
message sent to the multimeter.

Send (0, fluke, "VAC; AUTO; TRIGGER 2; *SRE 16", 29L, NLend);
if (ibsta & ERR) {

gpiberr("Send setup error");
}

Developing Your Application Chapter 3

NI-488.2M SRM for OS/2 3-18 © National Instruments Corp.

Step 6. Trigger the Instrument

In the previous step, the multimeter was instructed to wait for a trigger before
conducting a measurement. Now send a trigger command to the multimeter.
You could use the Trigger routine to accomplish this, but because the Fluke
45 is IEEE 488.2 compatible, you can just send it the trigger command, *TRG.
The VAL1? command instructs the meter to send the next triggered reading to
its output buffer.

Send(0, fluke, "*TRG; VAL1?", 11L, NLend);
if (ibsta & ERR) {

gpiberr("Send trigger error");
}

Step 7. Wait for the Measurement

After the meter is triggered, it takes a measurement and displays it on its front
panel, then asserts SRQ. You can detect the assertion of SRQ by using either
the TestSRQ or WaitSRQ routine. If you have a process that you want to
execute while you are waiting for the measurement, use TestSRQ. For this
example, you can use the WaitSRQ routine. The first argument in WaitSRQ is
the GPIB board number. The second argument is a flag returned by WaitSRQ.
This flag indicates whether SRQ is asserted.

WaitSRQ(0, &SRQasserted);
if (!SRQasserted) {

gpiberr("WaitSRQ error");
}

After you have detected SRQ, use the ReadStatusByte routine to poll the
meter and determine its status. The first argument is the GPIB board number,
the second argument is the GPIB address of the instrument, and the last
argument is a variable that ReadStatusByte uses to store the status byte of
the instrument.

ReadStatusByte(0, fluke, &statusByte);
if (ibsta & ERR) {

gpiberr("ReadStatusByte error");
}

Chapter 3 Developing Your Application

© National Instruments Corp. 3-19 NI-488.2M SRM for OS/2

After you have obtained the status byte, you must check to see if the meter has a
message to send. You can do this by checking the message available (MAV)
bit, bit 4, in the status byte.

if (!(statusByte & MAVbit) {
gpiberr("Improper Status Byte");
printf("Status Byte = 0x%x\n", statusByte);

}

Step 8. Read the Measurement

Use the Receive function to read the measurement over the GPIB. The first
argument is the GPIB interface board number, and the second argument is the
GPIB address of the multimeter. The third argument is a string into which the
Receive function places the data bytes from the multimeter. The fourth
argument represents the number of bytes to be received. The last argument
indicates that the Receive message terminates upon receiving a byte
accompanied with the END message.

Receive(0, fluke, buffer, 10L, STOPend);
if (ibsta & ERR) {

gpiberr("Receive error");
}

buffer[ibcntl] = '\0';
printf (Reading : %s\n", buffer);
sum += AsciiToFloat(buffer);
} /* end of loop started in Step 5 */

Step 9. Process the Data

Repeat Steps 5 through 8 in a loop until 10 measurements have been read, then
print the average of the readings as shown:

printf (" The average of the 10 readings is : %f\n", sum/10);

Developing Your Application Chapter 3

NI-488.2M SRM for OS/2 3-20 © National Instruments Corp.

Step 10. Place the Board Offline

Before ending your application program, take the board offline by using
the ibonl function.

ibonl(0,0);

Compiling and Linking Your Program

After you have written your application program, you need to compile your
program and link it with the language interface.

Make sure that the full pathname of the import library that you are using
(ni488.lib , nibor.lib , or ni488_16.lib) is included in the SET LIB
configuration command in the config.sys file. For example, if the import
library is in a directory d:\at-gpib\c , the SET LIB configuration
command may appear as follows:

SET LIB = d:\toolkt20\os2lib;d:\cset2\lib;d:\at-gpib\c

32-Bit C Applications

Before you compile your application program, make sure that the following line
is included at the beginning of your program:

#include "decl.h"

Compile your 32-bit IBM C program by using the following command:

icc /c cprog.c

then enter the following command to link your compiled program with the NI-
488.2 32-bit IBM C language interface:

link386 /NOI cprog.obj,,,ni488.lib;

Chapter 3 Developing Your Application

© National Instruments Corp. 3-21 NI-488.2M SRM for OS/2

Compile your 32-bit Borland C program using the following command:

bcc /c cprog.c

then enter the following command to link your compiled program with the NI-
488.2 32-bit Borland C language interface:

tlink /c /Toe c02.obj cprog.obj,,,os2.lib c2mti.lib
nibor.lib;

16-Bit C Applications

Before you compile your application program, make sure that the following line
is included at the beginning of the program:

#include "decl_16.h"

Compile your 16-bit program by using the following command:

cl /c cprog.c

then enter the following command to link your compiled program with the NI-
488.2 16-bit C language interface:

link /NOI cprog.obj,,,ni488_16.lib;

Running Your Application Program

After you have compiled and linked your application program, you can begin
using it. Make sure that the full pathname of the DLL that you are using
(ni488.dll , nibor.lib , or ni488_16.dll) is included in the
LIBPATH statement in your config.sys file. For example, if the DLL is in a
directory d:\at-gpib\c , the LIBPATH configuration command may appear
as follows:

LIBPATH=.;d:\os2\dll;d:\os2\mdos;d:\;d:\at-gpib\c;

If you discover errors when you execute the program, refer to Chapter 4,
Debugging Your Application.

© National Instruments Corp. 4-1 NI-488.2M SRM for OS/2

Chapter 4
Debugging Your Application

This chapter describes several ways to debug your application program.

Running ibtest

Presence Test of Driver

The following message appears in response to any of four situations:

<<< No driver present for GPIB x. >>>

• The ibtest program always tries to test the four AT-GPIB boards. In
most cases, you have fewer than four boards installed in your computer.
The above message appears when ibtest tries to test a board that does not
exist. You can ignore this message when it applies to a nonexistent board.

• The GPIB driver might not be installed. To correct this situation, make
certain that the line device=y:\at-gpib\gpib.sys —where y refers
to the letter of the drive where the NI-488.2M software is installed—is in
your config.sys file, then reboot.

• The Use this GPIB Interface field in ibconf might be set to no
for board GPIBx . If you want to use this board, you must set this field to
yes .

Before you run your application program, you should run the software
diagnostic test, ibtest , that came with your NI-488.2M software. The
ibtest program is an NI-488.2M application that makes calls to the driver. If
ibtest passes, your GPIB hardware and NI-488.2M software are interacting
correctly. The following paragraphs describe the messages you might receive
while running ibtest and how to resolve each problem. The term GPIBx
refers to one of the boards GPIB0, GPIB1, GPIB2, and GPIB3.

Debugging Your Application Chapter 4

NI-488.2M SRM for OS/2 4-2 © National Instruments Corp.

• GPIBx might be configured to use the same interrupt level that is already
used by another device in the system. This situation would cause a conflict
that would prevent the driver from installing GPIBx . Try a different
interrupt level and make certain that the hardware and software are
configured to use the same level.

Presence Test of GPIB Board

The following error message appears if GPIBx is not installed or if it is not
configured at the base I/O address that the driver expects:

<<< No board present for GPIB x. >>>

Check that the board is properly installed in your computer and run ibconf to
make certain that the driver is configured to use the same base I/O address as the
board.

Incorrect Interrupt Level

The ibtest program outputs dots, then hangs if the AT-GPIB board under test
is installed but configured to use an incorrect interrupt level. Run ibconf to
configure the driver to use the correct interrupt level.

GPIB Cables Connected

The following error message appears if a GPIB cable was connected to the board
when you ran ibtest :

Call(25) 'ibcmd “ “' failed, ibsta (0x134) not what
was expected (0x8130)

Call(25) 'ibcmd “ “' failed, expected ibsta (0x100) to
have the ERR bit set.

Disconnect all GPIB cables before trying the test again.

Chapter 4 Debugging Your Application

© National Instruments Corp. 4-3 NI-488.2M SRM for OS/2

Debugging with the Global Status Variables

After each function call to your NI-488.2M driver, ibsta , iberr , and ibcnt
are updated before the call returns to your application. You should check for an
error after each GPIB call. Refer to Chapter 3, Developing Your Application,
for more information about how to use these variables within your program to
automatically check for errors.

After you determine which GPIB call is failing and note the corresponding
values of the global variables, refer to Appendix A, Status Word Conditions,
and Appendix B, Error Codes and Solutions. These appendixes will help you
interpret the state of the driver.

Debugging with ibic

If your application does not automatically check for and display errors, you can
locate an error by using ibic . Simply issue the same functions or routines,
one at a time, as they appear in your application program. Because ibic
returns the status values and error codes after each call, you should be able to
determine which GPIB call is failing. For more information about ibic , refer
to Chapter 5, ibic—Interface Bus Interactive Control Utility.

After you determine which GPIB call is failing and note the corresponding
values of the global variables, refer to Appendix A, Status Word Conditions,
and Appendix B, Error Codes and Solutions. These appendixes will help you
interpret the state of the driver.

GPIB Error Codes

Table 4-1 lists the GPIB error codes. Remember that the error variable
is meaningful only when the ERR bit in the status variable is set. For a detailed
description of each error and possible solutions, refer to Appendix B, Error
Codes and Solutions.

Debugging Your Application Chapter 4

NI-488.2M SRM for OS/2 4-4 © National Instruments Corp.

Table 4-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 OS/2 error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as
required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem

Configuration Errors

If your hardware and software settings do not match, one of the following
problems might occur:

• Application hangs on input or output functions

• Data is corrupted

If these problems occur, make sure that the GPIB hardware settings match the
NI-488.2M software settings for the interrupt request level and the DMA
channel. For information on hardware and software default settings, refer to the
getting-started manual that came with your kit. The next section discusses how
to reconfigure your NI-488.2M software, if necessary.

Chapter 4 Debugging Your Application

© National Instruments Corp. 4-5 NI-488.2M SRM for OS/2

Reconfiguring the NI-488.2M Software

Several applications require customized configuration of the GPIB driver. For
example, you might want to terminate reads on a special end-of-string character,
or you might require secondary addressing. In these cases, you can use either
the ibconf utility to permanently reconfigure the driver, or you can use the
dynamic configuration function call ibconfig to modify the driver while
your application is running.

ibconfig does not permanently change the state of the driver. Using
dynamic configuration automatically configures the driver as necessary.

Note: To change settings other than base I/O address, interrupt level, or
DMA channel, National Instruments recommends using ibconfig
instead of running the ibconf utility .

If your program uses dynamic configuration, it will always work regardless of
the previous driver configuration. For more information, refer to the description
of ibconfig in the NI-488.2M Function Reference Manual for OS/2.

Timing Errors

If your application fails but the same calls issued in ibic are successful, your
program might be issuing the NI-488.2 calls too quickly for your device to
process and respond to them. This problem can also result in corrupted or
incomplete data.

A well-behaved IEEE 488 device should hold off handshaking and set the
appropriate transfer rate. If your device is not well behaved, you can test for
and resolve the timing error by single-stepping through your program and
inserting finite delays between each GPIB call. One way to perform this action
is to have your device communicate its status whenever possible. Although this
method is not possible with many devices, it is usually the best option. Your
delays will be controlled by the device and your application can adjust itself and
work independently on any platform. Other delay mechanisms will probably
cause varying delay times on different platforms.

Debugging Your Application Chapter 4

NI-488.2M SRM for OS/2 4-6 © National Instruments Corp.

Communication Errors

Repeat Addressing

Some devices require GPIB addressing before any GPIB activity. Devices
adhering to the IEEE 488.2 standard should remain in their current state until
specific commands are sent across the GPIB to change their state. You might
need to configure your NI-488.2M driver to perform repeat addressing if your
device does not remain in its currently addressed state. Refer to Chapter 7,
ibconf—Interface Bus Configuration Utility, or to the description of ibconfig
in the NI-488.2M Function Reference Manual for OS/2 for more information
about reconfiguring your software.

Termination Method

You should be aware of the termination method that your device uses. By
default, your NI-488.2M software is configured to send EOI on writes and
terminate reads on EOI or a specific byte count. If you send a command string
to your device and the device does not respond, it may not recognize the end of
the command. You may need to send a termination message, such as <CR>
<LF>, after a write command, as follows:

ibwrt(dev,”COMMAND\x0A\x0D”,9);

© National Instruments Corp. 5-1 NI-488.2M SRM for OS/2

Chapter 5
ibic—Interface Bus Interactive Control
Utility

This chapter introduces you to ibic , the interactive control program that you
can use to communicate with GPIB devices through functions you enter at your
keyboard.

Overview

With the Interface Bus Interactive Control (ibic) program, you communicate
with the GPIB devices through functions you enter at the keyboard. For specific
communication instructions, refer to the manual that came with your instrument.
You can use ibic to practice communication with the instrument, troubleshoot
problems, and develop your application program.

One way ibic helps you to learn about your instrument and to troubleshoot
problems is by displaying the following information on your computer screen
whenever you enter a command:

• The results of the status word (ibsta) in hexadecimal.

• The mnemonic constant of each bit set in ibsta .

• The mnemonic value of the error variable (iberr) if an error exists (the
ERR bit is set in ibsta).

• The count value for each read, write, or command function.

• The data received from your instrument.

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-2 © National Instruments Corp.

Starting ibic

The ibic program is contained in ibic.exe , the executable file that was
copied from your distribution disk when you installed the NI-488.2M software.
To run ibic , change to the appropriate subdirectory (AT-GPIB in the following
example) and enter ibic at the prompt as shown:

C:/AT-GPIB>

National Instruments
IEEE-488 Interface Bus Interactive Control Program (IBIC)
Copyright (c) 1993 National Instruments Corp. Version 2.0
Version Date: Apr 30 1993 Version Time: 09:42:25
All Rights Reserved

Press 'help' for help or 'q' to quit.

ibic

Exiting ibic

Typing e or q terminates execution of the ibic program.

ibic Syntax

The syntax of functions in ibic differs from the syntax in a programming
language. The main difference is that in ibic , certain messages (ibwrt ,
ibwrta , ibrd , ibrda , ibcmd , ibcmda , Send, SendList , and
SendCmds) are entered as strings from the keyboard.

Another difference is that the board or device descriptor (ud) is not explicitly
part of ibic function syntax. Before using any device or board, first call
ibfind to open that unit. ibic uses the descriptor returned by the driver for

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-3 NI-488.2M SRM for OS/2

all subsequent calls to that unit. When the device or board is opened, the
symbolic name of that device or board is added to the prompt.

The ibic utility makes no distinction between uppercase and lowercase.

Tables 5-1 and 5-2 summarize the syntax of NI-488 functions and NI-488.2
routines that are called from ibic . Syntax rules for the functions and routines
in ibic are explained in the table notes.

Table 5-1. Syntax for NI-488 Functions in ibic

Syntax Description Type Note

ibask mna Return configuration information dev, brd 16

ibbna
brdname

Change access board of device dev 1

ibcac [v] Become active Controller brd 2,3

ibclr Clear specified device dev

ibcmd string Send commands from string brd 4

ibcmda
string

Send commands asynch. from string brd 4

ibconfig mn
v

Alter configurable parameters dev, brd 15,3

ibdev vvvvvv Open an unused device when the
device name is unknown

dev 9

ibdma [v] Enable/disable DMA brd 2,3

ibeos v Change/disable EOS message dev, brd 3

ibeot [v] Enable/disable END message dev, brd 2,3

ibfind
udname

Return unit descriptor dev, brd 5

ibgts [v] Go from active Controller to standby brd 2,3

ibist [v] Set/clear ist brd 2,3

iblines Read the state of all GPIB lines dev, brd

ibln v v Check for presence of device of bus dev, brd 10

ibloc Go to local dev, brd

(continues)

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-4 © National Instruments Corp.

Table 5-1. Syntax for NI-488 Functions in ibic (Continued)

Syntax Description Type Note

ibonl [v] Place device online or offline dev, brd 2,3

ibpad v Change primary address dev, brd 3

ibpct Pass control dev

ibppc v Parallel poll configure dev, brd 3

ibrd v Read data dev, brd 6

ibrda v Read data asynchronously dev, brd 6

ibrdf flname Read data to file dev, brd 7

ibrpp Conduct a parallel poll dev, brd

ibrsc [v] Request/release system control brd 2,3

ibrsp Return serial poll byte dev

ibrsv v Request service dev 3

ibsad v Change secondary address dev, brd 3

ibsic Send interface clear brd

ibsre [v] Set/clear remote enable line brd 2,3

ibstop Abort asynchronous operation dev, brd

ibtmo v Change/disable time limit dev, brd 3

ibtrg Trigger selected device dev

ibwait
[mask]

Wait for selected event dev, brd 2,8

ibwrt string Write data brd 4

ibwrta
string

Write data asynchronously dev, brd 4

ibwrtf
flname

Write data from a file dev, brd 7

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-5 NI-488.2M SRM for OS/2

Table 5-2. Syntax for NI-488.2 Routines in ibic

Routine Syntax Description Note

AllSpoll list Serial poll multiple devices 11

DevClear address Clear a device 13

DevClearList list Clear multiple devices 11

EnableLocal list Enable local control 11

EnableRemote list Enable remote control 11

FindLstn list v Find all Listeners 3,11

FindRQS list Find device asserting SRQ 11

PassControl address Pass control to a device 13

PPoll Parallel poll devices

PPollConfig addr . line sense Configure device for
parallel poll

13,14

PPollUnconfig address Unconfigure device for
parallel poll

13

RcvRespMsg address data mode Receive response message 4,12,13

ReadStatusByte address Serial poll a device 13

Receive address data mode Receive data from a device 4,12,13

ReceiveSetup address Receive setup 13

ResetSys list Reset multiple devices 11

Send address data mode Send data to a device 4,12,13

SendCmds data Send command bytes 4

SendDataBytes list data mode Send data bytes 4,11,12

SendIFC Send interface clear

SendList list data mode Send data to multiple
devices

4,11,12

SendLLO Put devices in local lockout

(continues)

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-6 © National Instruments Corp.

Table 5-2. Syntax for NI-488.2 Routines in ibic (Continued)

Routine Syntax Description Note

SendSetup list Send setup 11

Set 488.2 v Enter into 488.2 mode for
board

SetRWLS list Put device in remote with
lockout state

11

TestSys list Cause multiple devices to
perform self tests

11

TestSRQ Test for service request

Trigger address Trigger a device 13

TriggerList list Trigger multiple devices 11

WaitSRQ Wait for service request

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-7 NI-488.2M SRM for OS/2

Notes for Tables 5-1 and 5-2

1. brdname is the symbolic name of the new board (for example, gpib1).

2. Values enclosed in square brackets ([]) are optional. The default value
is 0 for ibwait and 1 for all other functions.

3. v is a hex, octal, or decimal integer. Hex numbers must be preceded by 0
and x (for example, 0xD). Octal numbers must be preceded by 0 only
(for example, 015). Other numbers are assumed to be decimal.

4. string consists of a list of ASCII characters, octal or hex bytes, or
special symbols. You must enclose the entire sequence of characters in
quotation marks. An octal byte consists of a backslash character followed
by the octal value. For example, octal 40 is represented by \40 . A hex
byte consists of a backslash character and a character x followed by the
hex value. For example, hex 40 is represented by \x40 . The two special
symbols, \r for a carriage return character and \n for a linefeed
character, are a more convenient method for inserting the carriage return
and linefeed characters into the string, as shown in the following
example: "F3R5T1\r\n" . Because the carriage return is represented
equally well in hex, \xD and \r are equivalent strings.

5. udname is the symbolic name of the new device or board (for example,
dev1 or gpib0).

6. v is the number of bytes to read.

7. flname is the path name of the file to be read or written (for example,
\test\meter or printr.buf).

8. mask is a hex, octal, or decimal integer (see note 3), or a mask bit
mnemonic.

9. ibdev parameters are board id , pad , sad , tmo , eos , and eot .

10. ibln parameters are pad and sad .

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-8 © National Instruments Corp.

11. list is a comma-separated list of address integers, optionally enclosed
in parentheses. An empty list can be expressed by empty parentheses.

12. mode is a termination mode mnemonic or integer. Mnemonics are
NLend, DABend, and NULLend for send operations, and STOPend for
receive operations.

13. address is an integer representing a GPIB address. If only a primary
GPIB address is required, enter that integer. If a secondary address is
also required, create an integer with the primary address in the low-order
byte, and the secondary address in the high-order byte; for example,
pad 3 and sad 0x61 could be expressed as 0x6103.

14. line and sense are integers representing the data line to respond on
and the sense of the response.

15. mn is a mnemonic for a configuration parameter or the equivalent integer
value. Refer to the description of ibconfig in the NI-488.2M Function
Reference Manual for OS/2 for the allowed mnemonics and their values.

16. mna is a mnemonic for a configuration parameter or the equivalent
integer value. Refer to the description of ibask in the NI-488.2M
Function Reference Manual for OS/2 for the allowed mnemonics and
their values.

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-9 NI-488.2M SRM for OS/2

Adding End-of-String Characters

Some GPIB instruments require special termination characters or end-of-string
(EOS) characters to indicate to the device that a transmission has ended. If your
device requires any EOS characters, you must add these to the end of the data
string sent out by the ibwrt statement. The following example illustrates the
addition of the two most commonly used EOS characters: the carriage return
and the linefeed.

dev1:
[0100] (cmpl)
count: 8

ibwrt "F3R5T1\r\n"

The \r and \n represent the carriage return and linefeed characters,
respectively. Refer to Appendix A, Multiline Interface Messages, in the
NI-488.2M Function Reference Manual for OS/2 for more information about
non-printable characters.

Status Word Return

In ibic , all NI-488 functions (except ibfind and ibdev) and NI-488.2
routines return the status word ibsta in two forms: a hex value in square
brackets and a list of mnemonics in parentheses. In the following example, the
status word shows that the device function write operation completed
successfully.

dev1:
[0100] (cmpl)
count: 5

dev1:

ibwrt "f2t3x"

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-10 © National Instruments Corp.

For more information about the status word, refer to Chapter 3, Developing Your
Application.

Error Codes Return

If an NI-488 function or NI-488.2 routine completes with an error, ibic
displays the error mnemonic. The following example illustrates the result if an
error condition occurs in a data transfer.

dev1:
[8100] (err cmpl)
error: ENOL
count: 1

dev1:

ibwrt "f2t3x"

In this example, there are no Listeners, indicating that dev1 is powered off or
the GPIB cable is disconnected. For a detailed list of the error codes and their
meanings, refer to Chapter 4, Debugging Your Application.

Count Return

When an I/O function completes, ibic displays the actual number of bytes sent
or received, regardless of the existence of an error condition.

If one of the addresses in an address list of an NI-488.2 routine is invalid, ibic
displays the index of the invalid address as the count.

The count return has a different meaning, depending on which NI-488 function
or NI-488.2 routine is called. Refer to the function descriptions in the NI-
488.2M Function Reference Manual for OS/2 for the correct interpretation of the
count return.

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-11 NI-488.2M SRM for OS/2

Common NI-488.2 Routines in ibic

Use the auxiliary function set to select the NI-488.2 function mode. The
syntax for this form of the set command is as follows:

set 488.2 [n]

where n represents an optional board number (for example, n = 1 for gpib1).
The default value of n is 0 (gpib0).

After issuing this form of the set command, ibic uses the 488.2 prompt to
indicate that you are in NI-488.2 mode on board n.

set 488.2 1

488.2 (1):

After issuing the set 488.2 command, you can use any of the NI-488.2
routines.

Send

The Send routine sends data to a single GPIB device. You can use the
SendList command to send data to multiple GPIB devices. For example,
suppose you want to send the five-character string *IDN? followed by the new
line character with EOI. You want to send the message from the computer to
the devices at primary address 2 and 17. To do this, enter the SendList
command at the 488.2 (0): prompt.

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-12 © National Instruments Corp.

488.2 (0): SendList 2, 17 "*IDN?" NLend
[0128] (cmpl cic tacs)
count: 6

The returned status word [0128] indicates a successful I/O completion, while
the byte count indicates that all six characters, including the added new line,
were sent from the computer and received by both devices.

Receive

The Receive routine causes the GPIB board to receive data from another
GPIB device. The following example illustrates the use of the Receive
routine.

488.2 (0): Receive 5 10 STOPend
[2124] (end cmpl cic lacs)
count: 5
48 65 6c 6c 6f H e l l o

The command acquires data from the device at primary address 5. It stops
receiving data when 10 characters have been received or when the END
message is received. The acquired data is then displayed in hex format along
with its ASCII equivalent. The ibic program also displays the status word and
the count of transferred bytes.

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-13 NI-488.2M SRM for OS/2

Common NI-488 Functions in ibic

ibfind

To execute any NI-488 function in ibic , you must first use ibfind to open
the device or board you want to communicate with. When the device or board is
opened, the symbolic name of that device or board is added to the prompt. The
unit descriptor of a board or device is returned.

The following example shows ibfind opening dev1 .

:
id = 32259

dev1:

ibfind dev1

The returned value is the unit descriptor of the board.

The name used with the ibfind function must be a valid symbolic name
known by the driver. dev1 is the default name found in the driver. For more
information about valid names, refer to Chapter 7, ibconf—Interface Bus
Configuration Utility.

ibdev

The ibdev command selects an unopened device, opens it, and initializes its
access board.

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-14 © National Instruments Corp.

With ibdev , you can input the values in the following fields:

• Access Board for the Device

• Primary Address

• Secondary Address

• Timeout Setting

• EOT mode

• EOS mode

The following example shows ibdev opening an available device and
assigning it to access gpib0 (board = 0) with a primary address of 6 (pad =
6), a secondary address of hex 67 (sad = 0x67), a timeout of 10 ms (tmo = 7),
the END message enabled (eot = 1), and the EOS mode disabled (eos = 0).

: ibdev 0 6 0x67 7 1 0

id = 32259

ud0:

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-15 NI-488.2M SRM for OS/2

If you type ibdev at the prompt, ibic asks you for the input parameters, as
shown in the following example.

: ibdev

ud0:

enter board index: 0
enter primary address: 6
enter secondary address: 0x67
enter timeout: 7
enter 'EOI on last byte' flag: 1
enter end-of-string mode/byte: 0

id = 32259

Three distinct errors can occur with the ibdev call:

• EDVR – No device is available, the board index entered refers to a
nonexistent board—that is, not 0, 1, 2, or 3—or the board has no driver
installed. The following example illustrates an EDVR error.

: ibdev 4 6 0x67 7 1 0

id = -1
[8000] (err)
error: EDVR (2)

:

• ENEB – The board index entered refers to a known board (such as 0), but
the driver cannot find the board. In this case, run ibconf to verify that the
base address of the board is set correctly.

• EARG – One of the last five parameters is an illegal value. The ibdev call
returns with a new prompt and the EARG error (invalid function argument).
If the ibdev call returns with an EARG error, you must identify which
parameter is incorrect and use the appropriate command to correct it. In the
following example, pad has an invalid value. You can correct it with an
ibpad call.

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-16 © National Instruments Corp.

: ibdev 0 66 0x67 7 1 0

[8100] (err cmpl)
error: EARG

ud0: ibpad 6
previous value: 16

id=32261

ibwrt

The ibwrt command sends data from one GPIB device to another. For
example, to send the six-character data string F3R5T1 from the computer to a
device called dev1 , you enter the following string at the dev1: prompt.

dev1:
[0100] (cmpl)
count: 6

ibwrt "F3R5T1"

The returned status word [0100] indicates a successful I/O completion, while the
byte count indicates that all six characters were sent from the computer and
received by the device.

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-17 NI-488.2M SRM for OS/2

ibrd

The ibrd command causes a GPIB device to receive data from another GPIB
device. The following example illustrates the use of the ibrd function.

dev1:
[2100] (end cmpl)
count: 18
4e 44 43 56 28 30 30 30 N D C V (0 0 0
2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0
0d 0a • •

ibrd 20

This command acquires data from the device and displays it on the screen in hex
format and in its ASCII equivalent, along with information about the data
transfer, such as the status word and the byte count.

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-18 © National Instruments Corp.

Auxiliary Functions

Table 5-3 summarizes the auxiliary functions that you can use in ibic .

Table 5-3. Auxiliary Functions in ibic

Function Description Notes

set udname Select active device or board 1, 2

help [option] Display help information 3

! Repeat previous function

- Turn display off

+ Turn display on

n* function Execute function n times 4

n* ! Execute previous function n times

$ filename Execute indirect file 5

print string Display string on screen 6

buffer option Set the type of display used for buffers 7

e Exit or quit

q Exit or quit

Notes

1. udname is the symbolic name of the new device or board (for example,
dev1 or gpib0).

2. Initially call ibfind to open each device or board.

3. If option is omitted, a menu of options appears.

4. Replace function with correct ibic function syntax.

5. filename is the path name of a file that contains ibic functions to be
executed.

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-19 NI-488.2M SRM for OS/2

6. string consists of a list of ASCII characters, octal or hex bytes, or special
symbols. You must enclose the entire sequence of characters in quotation
marks. An octal byte consists of a backslash character followed by the octal
value. For example, octal 40 is represented by \040 . A hex byte consists
of a backslash character and a character x followed by the hex value. For
example, hex 40 is represented by \x40 . The two special symbols, \r for
a carriage return character and \n for a linefeed character, are a more
convenient method for inserting the carriage return and linefeed characters
into the string as shown in this example: "F3R5T1\r\n" . Because the
carriage return can be represented equally well in hex, \xD and \r are
equivalent strings.

7. Valid options for buffer are 0, 1, 2, and 3, which denote off , ascii ,
full , and brief , respectively.

Set (Select Device or Board)

Use the set command to change which device you are communicating with.

dev1:

plotter:

set plotter

This example assumes that you used ibconf to define the name plotter and
that you had already called ibfind plotter during an earlier ibic session.

The following example summarizes the use of ibfind and set in a typical
program.

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-20 © National Instruments Corp.

id=32260

dev1:
id=32261

plotter:
[0100] (cmpl)
count: 6

plotter:

dev1:
[0100] (cmpl)
count: 7

dev1:

ibfind plotter

ibwrt "F3T7G0"

set dev1

ibwrt "X7Y39G0"

: ibfind dev1

When you open a device or board using ibfind , you can use the auxiliary
function set to select the opened device or board. set changes the prompt to
the new symbolic name. You can also use set to switch between NI-488 mode
and NI-488.2 mode.

The argument udname represents any of the symbolic device or board names
recognized by the driver. The default names are gpib0 , gpib1 , gpib2 , and
gpib3 for boards, and dev1 through dev32 for devices (unless you have
changed the device names using ibconf).

Help (Display Help Information)

The help function displays a menu of topics to choose from, where each topic
lists relevant functions or codes. For example, the topic list1 lists all NI-488
functions. The status topic lists all status word (ibsta) codes.

Help also gives information about the syntax of functions.

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-21 NI-488.2M SRM for OS/2

! (Repeat Previous Function)

The ! function repeats the most recent function executed. The following
example issues an ibsic command, then repeats that same command as
follows.

ibsic gpib0:

[0130] (cmpl cic atn)

gpib0: !

(cmpl cic atn)[0130]

- (Turn OFF Display) and + (Turn ON Display)

The - function causes the bytes received not to be displayed on the screen. This
function is useful when you want to repeat any I/O function quickly without
waiting for screen output to be displayed.

The + function causes the display to be restored.

The following example shows how the - and + functions are used. Twenty-four
consecutive letters of the alphabet are read from a device using three ibrd
calls.

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-22 © National Instruments Corp.

dev1:
[2100] (end cmpl)
count: 8
61 62 63 64 65 66 67 68 a b c d e f g h

dev1: -

dev1:
[2100] (end cmpl)
count: 8
buffer: (off)

dev1: +

dev1:
[2100] (end cmpl)
count: 8
71 72 73 74 75 76 77 78 q r s t u v w x

ibrd 8

ibrd 8

ibrd 8

n* (Repeat Function n Times)

The n* function repeats the execution of the specified function n times, where n
is an integer. In the following example, the message Hello is sent to the
printer five times.

printer: 5*ibwrt "Hello"

In the following example, Hello is first sent 20 more times, then 10 more
times.

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-23 NI-488.2M SRM for OS/2

printer:
printer: 20* !

10* !

5*ibwrt "Hello"

printer:

Notice that the multiplier (*) does not become part of the function name—that
is, ibwrt "Hello" is repeated 20 times, not 5* ibwrt "Hello" .

$ (Execute Indirect File)

The $ function reads a specified file and executes the ibic functions in
sequence as if they were entered in that order from the keyboard. The following
example executes the ibic functions listed in the file usrfile .

gpib0: $ usrfile

The following example repeats the operation three times.

gpib0: 3*$ usrfile

The display mode, in effect before this function was executed, is restored
afterward but may be changed by functions in the indirect file.

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-24 © National Instruments Corp.

Print (Display the ASCII String)

You can use the print function to echo a string to the screen. The following
example shows how you can use ASCII or hex with the print command.

dev1:
hello

dev1:
and

goodbye

print "hello"

print "and\r\n\x67\x6f\x6f\x64\x62\x79\x65"

You can also use print to display comments from indirect files. The print
string appears even if the display is suppressed with the - function.

ibic Examples

This section presents examples for using NI-488.2 routines and NI-488 board
functions and device functions in ibic .

NI-488.2 Routines Example

This section shows how you might use ibic to test a sequence of NI-488.2
routines.

1. Use the set command to set up ibic for NI-488.2 calls.

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-25 NI-488.2M SRM for OS/2

488.2 (0):

set 488.2:

2. Send the interface clear message (IFC) to all devices. IFC clears the bus.

488.2 (0):
[0130] (cmpl cic atn)

SendIFC

3. Clear the device. The device is assumed to be on the GPIB bus at primary
address 2.

488.2 (0): DevClear 2
[0138] (cmpl cic atn tacs)
count: 4

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-26 © National Instruments Corp.

4. Write the routine, range, and trigger source information to a digital
voltmeter.

488.2 (0): Send 2 "F3R7T3" DABend
[0128] (cmpl cic tacs)
count: 6

5. Trigger the device.

488.2 (0): Trigger 2
[0138] (cmpl cic atn tacs)
count: 4

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-27 NI-488.2M SRM for OS/2

6. Wait for the meter to request service (by asserting the SRQ bus line), then
read the status byte of the meter.

488.2 (0):
[1138] (srqi cmpl cic atn tacs)
SRQ line is asserted

488.2 (0):
[0134] (cmpl cic atn lacs)
Poll: 2 => 0x0040 (decimal : 64)

WaitSRQ

ReadStatusByte 2

7. Read the data from the meter.

Receive 2 20 STOPend488.2 (0):
[2124] (end cmpl cic lacs)
count: 20
0d 0a 4e 44 43 56 2d 30 • • N D C V - 0
30 30 2e 30 30 34 37 45 0 0 . 0 0 4 7 E
2b 30 0d 0a + 0 • •

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-28 © National Instruments Corp.

NI-488 Device Functions Example

This section shows how you might use ibic to test a sequence of NI-488
device function calls.

1. Find the device name that was given to the device in the ibconf program.

id=32259

dvm:

: ibfind dvm

2. Clear the device.

dvm:
[0100] (cmpl)

ibclr

3. Write the function, range, and trigger source instructions to the DVM.

dvm:
[0100] (cmpl)
count: 6

ibwrt "F3R7T3"

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-29 NI-488.2M SRM for OS/2

4. Trigger the device.

dvm:
[0100] (cmpl)

ibtrg

5. Wait for a timeout or for DVM to request service. If the current timeout
limit is too short, use ibtmo to change it.

dvm:
[0900] (rqs cmpl)

ibwait (TIMO RQS)

6. Read the serial poll status byte. This serial poll status byte varies,
depending on the device used.

dvm:
[0100] (cmpl)
Poll: 0x40 (decimal : 64)

ibrsp

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-30 © National Instruments Corp.

7. Use the read command to display the data on the screen both in hex values
and their ASCII equivalents.

dvm:
[0100] (cmpl)
count: 18
4e 44 43 56 20 30 30 30 N D C V 0 0 0
2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0
0a 0a • •

ibrd 18

8. Terminate the ibic program.

dvm: e

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-31 NI-488.2M SRM for OS/2

NI-488 Board Functions Example

This section shows how you might use ibic to test a sequence of NI-488 board
function calls.

1. Begin by opening an interface board.

id=32006

gpib0:

: ibfind gpib0

2. Send IFC to all devices. IFC clears the bus and asserts attention (ATN) on
the bus.

gpib0:
[0130] (cmpl cic atn)

ibsic

3. Turn on the remote enable signal (REN).

gpib0:
[0130] (cmpl cic atn)
previous value: 0

ibsre 1

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-32 © National Instruments Corp.

4. Set up the addressing for the device to listen and the computer to talk. The
question mark (?) and underscore (_) characters represent the unlisten
(UNL) and untalk (UNT) commands, respectively. These are sent in
ibcmd to reset the bus addressing. The @ character represents the talk
address of the GPIB board. The ! character represents the listen address of
the device, which in this case is at GPIB primary address 1.

gpib0:
[0138] (cmpl cic atn tacs)
count: 4

ibcmd "?_@!"

5. Write the function, range, and trigger source instructions to the DVM. Be
sure an error has not occurred before proceeding.

gpib0:
[0128] (cmpl cic tacs)
count: 6

ibwrt "F3R7T3"

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-33 NI-488.2M SRM for OS/2

6. Send the group execute trigger message (GET) to trigger a measurement
reading. The GET message is represented by the hex value 8.

gpib0:
[0138] (cmpl cic atn tacs)
count: 1

ibcmd "\x08"

7. Wait for the DVM to set SRQ or wait for a timeout. If the current timeout
limit is too short, use ibtmo to change it.

gpib0:
[1138] (srqi cmpl cic atn tacs)

ibwait (TIMO SRQI)

8. Set up the device for a serial poll. The question mark (?) and underscore
(_) characters represent the unlisten (UNL) and untalk (UNT) characters,
respectively, and reset the bus addressing. The underscore (_) represents
the listen address of the Controller. The hex value 18 represents the serial
poll enable function, while A represents the talk address of the device.

gpib0:
[1174] (srqi cmpl rem cic atn lacs)
count: 5

ibcmd "?_ \x18A"

ibic—Interface Bus Interactive Control Utility Chapter 5

NI-488.2M SRM for OS/2 5-34 © National Instruments Corp.

9. Read the status byte. The status byte returned may vary, depending on the
device used.

gpib0:
[0164] (cmpl rem cic lacs)
count: 1
50 P

ibrd 1

10. Complete the serial poll by sending the serial poll disable message (SPD).
The hex value 19 represents the serial poll disable function.

gpib0:
[0174] (cmpl rem cic atn lacs)
count: 1

ibcmd "\x19"

11. Read the measurement. The DVM and the computer are still addressed to
talk and to listen.

gpib0:
[2164] (end cmpl rem cic lacs)
count: 20
0d 0a 4e 44 43 56 2d 30 • • N D C V - 0
30 30 2e 30 30 34 37 45 0 0 . 0 0 4 7 E
2b 30 0d 0a + 0 • •

ibrd 20

Chapter 5 ibic—Interface Bus Interactive Control Utility

© National Instruments Corp. 5-35 NI-488.2M SRM for OS/2

12. Terminate the ibic program.

gpib0: e

© National Instruments Corp. 6-1 NI-488.2M SRM for OS/2

Chapter 6
GPIB Programming Techniques

This chapter discusses the following GPIB topics: data transfer termination
methods, waiting for GPIB conditions, device-level calls and bus management,
serial polling and SRQ servicing, and parallel polling.

Termination of Data Transfers

GPIB data transfers are terminated either when the GPIB EOI line is asserted
with the last byte of a transfer or when a preconfigured end-of-string (EOS)
character is transmitted. By default, the NI-488.2M driver asserts EOI with the
last byte of writes and the EOS modes are disabled.

You can use the ibeot function to enable the end of transmission (EOT)
mode. If EOT mode is enabled, the NI-488.2M driver asserts the GPIB EOI
line when the last byte of a write is sent out on the GPIB. If it is disabled, the
EOI line is not asserted with the last byte of a write.

You can use the ibeos function to enable/disable or configure the EOS modes.
EOS mode configuration includes the following information:

• A 7-bit or 8-bit EOS byte.

• The EOS comparison method, which indicates whether the EOS byte has 7
or 8 significant bits. For a 7-bit EOS byte, the high bit of the EOS byte is
ignored.

• The EOS write method. If the EOS write method is enabled, the
NI-488.2M driver automatically asserts the GPIB EOI line when the EOS
byte is written to the GPIB. If the buffer passed into an ibwrt call
contains five occurrences of the EOS byte, the EOI line is asserted as each
of the five EOS bytes is written to the GPIB. If an ibwrt buffer does not
contain an occurrence of the EOS byte, the EOI line is not asserted (unless
the EOT mode is enabled, in which case the EOI line is asserted with the
last byte of the write).

GPIB Programming Techniques Chapter 6

NI-488.2M SRM for OS/2 6-2 © National Instruments Corp.

• The EOS read method. If the EOS read method is enabled, the
NI-488.2M driver terminates ibrd calls when the EOS byte is detected on
the GPIB or when the GPIB EOI line is asserted or when the specified
count has been reached. If the EOS read method is disabled, ibrd calls
terminate only when the GPIB EOI line is asserted or the specified count
has been read.

You can use the ibconfig function to determine whether the GPIB
EOI line was asserted when the EOS byte was read in. Use the
IbcEndBitIsNormal option to configure the software to report only
the END bit in ibsta when the GPIB EOI line is asserted. By default, the NI-
488.2M driver reports END in ibsta when either the EOS byte is read in or
the EOI line is asserted during a read.

Waiting for GPIB Conditions

You can use the ibwait function to obtain the current ibsta value or to
suspend your application until a specified condition occurs on the GPIB. If you
use ibwait with a parameter of 0, it immediately updates ibsta and returns.
If you want to use ibwait to wait for one or more events to occur, then pass a
wait mask to the function. The wait mask should always include the TIMO
event; otherwise, your application is suspended indefinitely until one of the
wait mask events occurs.

Device-Level Calls and Bus Management

The NI-488 device-level calls are designed to perform all of the GPIB
management for your application program. However, the NI-488.2M driver can
handle bus management only when the GPIB interface board is CIC. Only the
CIC is able to send command bytes to the devices on the bus in order to perform
device addressing or other bus management activities. Use one of the following
methods to make your GPIB board the CIC:

• If your GPIB board is configured as the System Controller (default), it
automatically makes itself the CIC by asserting the IFC line the first time
you make a device-level call.

Chapter 6 GPIB Programming Techniques

© National Instruments Corp. 6-3 NI-488.2M SRM for OS/2

• If your setup includes more than one Controller or if your GPIB interface
board is not configured as the System Controller, use the CIC protocol
method. To use the protocol, issue the ibconfig function or use the
ibconf configuration utility to activate the CIC protocol. If the interface
board is not CIC and you make a device-level call with the CIC protocol
enabled, the following sequence occurs:

1. The GPIB interface board asserts the SRQ line.

2. The current CIC serial polls the board.

3. The interface board returns a response byte of hex 42.

4. The current CIC passes control to the GPIB board.

If the current CIC does not pass control, the NI-488.2M driver returns the
ECIC error code to your application. This error can occur if the current CIC
does not understand the CIC protocol. If this happens, you could send a
device-specific command requesting control for the GPIB board, then you
could use a board-level ibwait command to wait for CIC.

Serial Polling

You can use serial polling to obtain specific information from GPIB devices
when they request service. When the GPIB SRQ line is asserted, it signals the
Controller that a service request is pending. The Controller must then determine
which device asserted the SRQ line and respond accordingly. The most common
method for SRQ detection and servicing is the serial poll. This section describes
how you can set up your application to detect and respond to service requests
from GPIB devices.

Service Requests from IEEE 488 Devices

IEEE 488 devices request service from the GPIB Controller by asserting the
GPIB SRQ line. When the Controller acknowledges the SRQ, it serial polls
each device on the bus in order to determine which device requested service.
Any device requesting service returns a status byte with bit 6 set and then
unasserts the SRQ line. Devices not requesting service return a status byte with
bit 6 cleared. Manufacturers of IEEE 488 devices use lower order bits to
communicate the reason for the service request or to summarize the state of the
device.

GPIB Programming Techniques Chapter 6

NI-488.2M SRM for OS/2 6-4 © National Instruments Corp.

Service Requests from IEEE 488.2 Devices

The IEEE 488.2 standard refined the bit assignments in the status byte. In
addition to setting bit 6 when requesting service, IEEE 488.2 devices also use
two other bits to specify their status. Bit 4, the Message Available bit (MAV),
is set when the device is ready to send previously queried data.
Bit 5, the Event Status bit (ESB), is set if one or more of the enabled
IEEE 488.2 events occurs. These events include Power-On, User Request,
Command Error, Execution Error, Device Dependent Error, Query Error,
Request Control, and Operation Complete. The device can assert SRQ when
ESB or MAV is set or when a manufacturer-defined condition occurs.

Automatic Serial Polling

You can enable automatic serial polling if you want your application to conduct
a serial poll automatically any time the SRQ line is asserted. The autopolling
procedure occurs as follows.

1. Use the configuration utility, ibconf , or the configuration function,
ibconfig with option IbcAUTOPOLL. (Autopolling is enabled by
default.)

2. When the SRQ line is asserted, the driver automatically serial polls the
devices.

3. Each positive serial poll response (bit 6 or hex 40 is set) is stored in a queue
associated with the device that sent it. If the poll has a positive response,
the RQS bit of the device status word, ibsta , is set.

4. The polling continues until SRQ is unasserted or an error condition is
detected.

5. The RQS bit of the device status word remains set as long as the autopoll
response queue is not empty. The RQS bit is cleared when the autopoll
response queue becomes empty.

6. Use the ibrsp function to empty the queue. ibrsp returns the first
queued response. Other responses are read in first-in-first-out (FIFO)
fashion. If the RQS bit of the status word is not set when ibrsp is called,
a serial poll is conducted and returns whatever response is received. You
should empty the queue as soon as an automatic serial poll occurs, because
autopolling may not continue if the queue is full.

Chapter 6 GPIB Programming Techniques

© National Instruments Corp. 6-5 NI-488.2M SRM for OS/2

7. If the RQS bit of the status word is still set after ibrsp is called, the
response byte queue contains at least one more response byte. If this
happens, you should continue to call ibrsp until RQS is cleared.

If no device responds positively to the serial poll or if SRQ remains in effect
because of a faulty instrument or cable, a GPIB system error occurs. In this
case, the ESRQ error is reported to you if and when you issue an ibwait call
with the RQS bit included in the wait mask. Aside from the difficulty caused
by ESRQ in waiting for RQS, the error has no detrimental effects on other
GPIB operations.

Autopolling and the Stuck SRQ State

If autopolling is enabled and the GPIB interface board detects an SRQ, all open
devices connected to that board are serial polled by the driver. The serial poll
continues until either SRQ unasserts or all the devices have been polled.

If the driver serial polls all devices and the SRQ line is still asserted, a stuck
SRQ state is in effect. If this happens during an ibwait for RQS, the driver
reports the ESRQ error. If the stuck SRQ state happens, no further polls are
attempted until either an ibwait for RQS or an ibrsp for the device whose
serial poll queue is full is made. When either ibwait or ibrsp for the device
whose serial poll is full is issued, the stuck SRQ state is terminated and a new
set of serial polls is attempted.

Autopolling and Interrupts

If autopolling and interrupts are both enabled, the NI-488.2M software can
perform autopolling after any device-level NI-488 call as long as no GPIB is
currently I/O in progress. This means that an automatic serial poll can occur
even when your application is not making any calls to the NI-488.2M software.
Autopolling can also occur when a device-level ibwait for RQS is in
progress. Autopolling is disallowed whenever an application makes a board-
level NI-488 function or any NI-488.2 routine or when the stuck SRQ (ESRQ)
condition occurs.

If autopolling is enabled and interrupts are disabled, you can use autopolling
only during a device-level ibwait for RQS or immediately after a device-level
NI-488 function is completed and before control is returned to the application
program.

GPIB Programming Techniques Chapter 6

NI-488.2M SRM for OS/2 6-6 © National Instruments Corp.

SRQ and Serial Polling with NI-488 Device Functions

You can use the device-level NI-488 function ibrsp to conduct a serial poll.
ibrsp conducts a single serial poll and returns the serial poll response byte to
the application program. If automatic serial polling is enabled, the application
program can use ibwait to suspend program execution until RQS appears in
the status word, ibsta . The program can then call ibrsp to obtain the serial
poll response byte.

The following example illustrates the use of the ibwait and ibrsp functions
in a typical SRQ servicing situation when automatic serial polling is enabled.

#include “decl.h”

char GetSerialPollResponse (int DeviceHandle)
{

char SerialPollResponse = 0;

ibwait (DeviceHandle, TIMO | RQS);

if (ibsta & RQS) {
printf (“Device asserted SRQ.\n”);
/* Use ibrsp to retrieve the serial poll

response. */
ibrsp (DeviceHandle, &SerialPollResponse);

}
return SerialPollResponse;

}

SRQ and Serial Polling with NI-488.2 Routines

The NI-488.2M software includes a set of NI-488.2 routines that you can use to
conduct SRQ servicing and serial polling. Routines pertinent to SRQ servicing
and serial polling are AllSpoll , FindRQS , ReadStatusByte , TestSRQ ,
and WaitSRQ.

AllSpoll can serial poll multiple devices with a single call. It places the
status bytes from each polled instrument into a predefined array, then you must
check the RQS bit of each status byte to determine whether that device
requested service.

Chapter 6 GPIB Programming Techniques

© National Instruments Corp. 6-7 NI-488.2M SRM for OS/2

ReadStatusByte is similar to AllSpoll , except that it only serial polls a
single device. It is also analogous to the device-level NI-488 ibrsp function.

FindRQS serial polls a list of devices until it finds a device that is requesting
service or until it has polled all the devices on the list. The routine returns the
index and status byte value of the device requesting service.

TestSRQ determines whether the SRQ line is asserted or unasserted, and it
returns to the program immediately.

WaitSRQ is similar to TestSRQ, except that WaitSRQ suspends the
application program until either SRQ is asserted or the timeout period is
exceeded.

The following examples use NI-488.2 routines to detect SRQ, then determine
which device requested service. In these examples, three devices are present on
the GPIB at addresses 3, 4, and 5, and the GPIB interface is designated as bus
index 0. The first example uses FindRQS to determine which device is
requesting service, and the second example uses AllSpoll to serial poll all
three devices. Both examples use WaitSRQ to wait for the GPIB SRQ line to
be asserted.

Note: Automatic serial polling is not used in these examples because you
cannot use it with NI-488.2 routines.

Example 1

This example illustrates the use of FindRQS to determine which device is
requesting service.

void GetASerialPollResponse (char *DevicePad,
char *DeviceResponse)

{
char SerialPollResponse = 0;
int WaitResult;
Addr4882_t Addrlist[4] = {3,4,5,NOADDR};

WaitSRQ (0, &WaitResult);

if (WaitResult) {
printf (“SRQ is asserted.\n”);

GPIB Programming Techniques Chapter 6

NI-488.2M SRM for OS/2 6-8 © National Instruments Corp.

/* Use FindRQS to find a device that requested service. */

FindRQS (0, AddrList, &SerialPollResponse);
if (!(ibsta & ERR)) {

printf (“Device at pad %x returned byte %x.\n”,
 AddrList[ibcnt], (int)SerialPollResponse);

*DevicePad = AddrList[ibcnt];
*DeviceResponse = SerialPollResponse;

}
}

return;
}

Example 2

This example illustrates the use of AllSpoll to serial poll three devices.

void GetAllSerialPollResponses (Addr4882_t AddrList[],
short ResponseList[])
{

int WaitResult;

WaitSRQ (0, &WaitResult);

if (WaitResult) {
printf (“SRQ is asserted.\n”);

/* Use Allspoll to serial poll all the devices at once.*/

AllSpoll (0, AddrList, ResponseList);
if (!(ibsta & ERR)) {

for (i = 0; AddrList[i] != NOADDR; i++) {
printf(“Device at pad %x returned byte %x.\n”,

AddrList[i], ResponseList[i]);
}

}
}

return;
}

Chapter 6 GPIB Programming Techniques

© National Instruments Corp. 6-9 NI-488.2M SRM for OS/2

Parallel Polling

Although parallel polling is not widely used, it is a useful method for obtaining
the status of more than one device at the same time. The advantage of parallel
polling is that a single parallel poll can easily check up to eight individual
devices at once. In comparison, eight separate serial polls would be required to
check eight devices for their serial poll response bytes. The value of the
individual status bit (ist) determines the parallel poll response.

Implementing a Parallel Poll

You can implement parallel polling with either NI-488 functions or NI-488.2M
routines. If you use NI-488.2M routines to execute parallel polls, you do not
need extensive knowledge of the parallel polling messages. However, you
should use the NI-488.2M functions for parallel polling when the GPIB board is
not the Controller and must configure itself for a parallel poll and set its own
individual status bit (ist).

Parallel Polling with NI-488.2 Routines

Follow these steps to implement parallel polling using NI-488.2 routines. Each
step contains example code.

1. Configure the device for parallel polling using the PPollConfig
routine, unless the device can configure itself for parallel polling. The
following example configures a device at address 3 to assert data line 5
(DIO5) when its ist value is 1.

#include "decl.h"
char response;
Addr4882_t AddressList[2];

/* The following command clears the GPIB. */

SendIFC(0);

/* The value of sense is compared with the ist bit of
the device and determines whether the data line is
to be asserted or unasserted. */

PPollConfig(0,3,5,1);

GPIB Programming Techniques Chapter 6

NI-488.2M SRM for OS/2 6-10 © National Instruments Corp.

2. Conduct the parallel poll using PPoll , store the response, and check the
response for a certain value. In the following example, because DIO5 is
asserted by the device if ist = 1, the program checks bit 4 (hex 10) in the
response to determine the value of ist .

/* The second step performs the parallel poll and
 stores the response in response. */

PPoll(0, &response);

/* If response has bit 4 (hex 10) set, the ist bit
 of the device at that time is equal to 1. If
 it does not appear, the ist bit is equal to 0.
 Check the bit in the following statement. */

if (response & 0x10) {
printf("The ist equals 1.\n");

}
else {

printf("The ist equals 0.\n");
}

3. Unconfigure the device for parallel polling using the PPollUnconfig
routine.

/* The third step disables parallel polling for
 device 3. Notice that the NOADDR constant
 must appear at the end of the array to
 signal the end of the address list. If
 NOADDR is the only value in the array, ALL
 devices are sent the parallel poll disable
 message. */

AddressList[0] = 3;
AddressList[1] = NOADDR;
PPollUnconfig(0, AddressList);

Parallel Polling with NI-488 Functions

Follow these steps to implement parallel polling using NI-488 functions. Each
step contains example code.

1. Configure the device for parallel polling using the ibppc function, unless
the device can configure itself for parallel polling.

Chapter 6 GPIB Programming Techniques

© National Instruments Corp. 6-11 NI-488.2M SRM for OS/2

ibppc requires an 8-bit value to designate the data line number, the ist
sense, and whether the function configures or unconfigures the device for
the parallel poll. The bit pattern is as follows:

0 1 1 E S D2 D1 D0

E is 1 to disable parallel polling and 0 to enable parallel polling for that
particular device.

S is 1 if the device is to assert the assigned data line when ist = 1, and S
is 0 if the device is to assert the assigned data line when
ist = 0.

D2 through D0 determine the number of the assigned data line. The
physical line number is the binary line number plus one. For example,
DIO3 has a binary bit pattern of 010.

The following example code configures a device for parallel polling using
NI-488 functions. The device asserts DIO7 if its ist = 0.

In this example, the ibdev command is used to open a generic device that
has the desired characteristics. The device has a primary address of 3, no
secondary address, a timeout of 3 s, EOS characters disabled, and asserts
EOI with the last byte of a write operation.

#include "decl.h"
char ppr;

dev = ibdev(0,3,0,T3s,1,0);

/* The following call configures the device to
respond to the poll on DIO7 and to assert the line
in the case when its ist is 0. Pass the binary
bit pattern, 0110 0110 or hex 66, to ibppc.*/

ibppc(dev, 0x66);

If the GPIB interface board configures itself for a parallel poll, you should
still use the ibppc function. Pass the board index or a board unit
descriptor value as the first argument in ibppc . In addition, if the
individual status bit (ist) of the board needs to be changed, use the
ibist function. In the following example, the GPIB board is to configure
itself to participate in a parallel poll. It asserts DIO5 when ist = 1 if a
parallel poll is conducted.

GPIB Programming Techniques Chapter 6

NI-488.2M SRM for OS/2 6-12 © National Instruments Corp.

/*Board parallel poll configuration example*/

ibppc(0, 0x6C);
ibist(0, 1);

2. Conduct the parallel poll using ibrpp and check the response for a certain
value. The following example code performs the parallel poll and
compares the response to hex 10, which corresponds to DIO5. If that bit is
set, the ist of the device is 1.

ibrpp(dev, &ppr);
if (ppr & 0x10) printf("ist = 1\n");

3. Unconfigure the device for parallel polling with ibppc . Notice that any
value having the parallel poll disable bit set (bit 4) in the bit pattern
disables the configuration, so you can use any value between hex 70 and
7E.

ibppc(dev, 0x70);

© National Instruments Corp. 7-1 NI-488.2M SRM for OS/2

Chapter 7
ibconf—Interface Bus Configuration
Utility

This chapter contains a description of ibconf , the software configuration
program you can use to configure the NI-488.2M software.

Overview

The ibconf utility is a screen-oriented, interactive program you can use to
view or modify the configuration parameters of your GPIB interface boards and
the GPIB devices connected to them.

The ibconf utility can read in and display configuration parameters for the
driver file on disk, the driver resident in memory, or the configuration data file,
depending on which you select. You can then save the changes to any or all of
these files.

Instead of using ibconf , you can configure your driver dynamically by using
the ibconfig function to alter any board or device characteristic while your
program is running. If you use dynamic configuration, you do not need to run
ibconf before you start your application. Also, you can run your application
on any computer with the appropriate NI-488.2M software regardless of its
configuration, because the application configures the driver as necessary.

Note: Dynamic configuration is the preferred method of GPIB application
development.

Starting ibconf

The ibconf utility is included on the distribution disk with your
NI-488.2M software. After installation, ibconf resides in your GPIB
directory. To run ibconf , change to your GPIB directory and enter the
following command:

ibconf [-h[elp]] [-c] [-m] [-e]

ibconf—Interface Bus Configuration Utility Chapter 7

NI-488.2M SRM for OS/2 7-2 © National Instruments Corp.

where -h or -help causes the command format to be printed to the screen; -c
enables color support (default for color monitors); -m sets monochrome
override; and -e enables expert mode, disabling ibconf warning messages.

Levels of ibconf

The ibconf utility operates at the following four levels:

• Input Selection level—determines which configuration file ibconf reads.

• Map level—depicts the device connections as defined in the driver.

• Description level—consists of screens describing the individual boards and
devices that make up the system.

• Output Selection level—determines which configuration files are to be
updated.

The four levels are described in detail in the following sections.

Input Selection Level

Figure 7-1 shows the screen of the input selection level in ibconf .

Figure 7-1. Input Selection Level of ibconf

Chapter 7 ibconf—Interface Bus Configuration Utility

© National Instruments Corp. 7-3 NI-488.2M SRM for OS/2

In the input selection level, you can select a source file that contains
configuration data. When you select a source configuration file, ibconf
obtains configuration settings from that source file. The settings are displayed
and you can then edit them.

The three types of configuration files are the driver residing on your hard disk,
the memory-resident driver, and the data file.

• Driver—an NI-488.2M driver file for OS/2, such as gpib.sys , that you
copy from the distribution disk to your hard disk. Changes to a driver file
do not affect your application until the system is restarted.

Caution: Do not modify the master copy of gpib.sys on the
distribution disk. Make sure your distribution disk is write
protected.

• Memory-resident driver—the NI-488.2M driver for OS/2 that is
loaded and resident in memory after system startup. Changes in the
memory-resident driver take effect for a given board or device only after all
current processes have closed that board or device and a new open is
performed.

Note: You cannot change device names, board interrupt levels, or the Use
this GPIB Interface setting state in the memory-resident
driver. To change these settings, you must change them by using
ibconf (in the driver residing on your hard disk), then reboot the
system.

• Data file—a binary file that stores configuration data. To load a data file to
the driver or the memory-resident driver, run ibconf and select the data
file as the source.

After you select a source configuration file, continue to the next level, the map
level. If you want to read a configuration from another source file, you must exit
and restart ibconf .

ibconf—Interface Bus Configuration Utility Chapter 7

NI-488.2M SRM for OS/2 7-4 © National Instruments Corp.

Map Level

Figure 7-2 shows the map level of ibconf .

Figure 7-2. Map Level of ibconf

The map-level screen of ibconf displays the names of all devices controlled by
the driver. It also indicates which devices, if any, are accessed through each
interface board. You can move around the map by using the cursor control keys.
For your convenience, cursor control keys and function keys are defined at the
bottom of your computer screen.

The following options are available at the map level:

• Device map of the boards

• Help

• Rename

• (Dis)connect

• Edit

• Exit

The following sections describe the options available in the map level of
ibconf .

Chapter 7 ibconf—Interface Bus Configuration Utility

© National Instruments Corp. 7-5 NI-488.2M SRM for OS/2

Device Map of the Boards

Use <PageUp> or <PageDown> to toggle between the display maps for the
different GPIB interface boards. These boards are referred to as access boards.
The maps show which devices are assigned to each board. By default, an equal
number of devices are attached to each GPIB interface board.

Help

Use <F1> to access the comprehensive, online help feature of ibconf . The
help information describes the functions and common terms associated with the
map level of ibconf .

Rename

Use <F4> to rename a device. Move to the device you want to rename by using
the cursor control keys. Press <F4>, then enter the new name of the device. You
may use up to seven letters to name your device, and you may use uppercase or
lowercase letters. The following restrictions apply when naming a device:

• Extensions (.xxx) are not allowed.

• As specified by OS/2, the device name cannot have the following invalid
characters (ASCII characters less than hex 21):

. " / \ [] :
| < > + = ; ,

• Do not use the reserved names con or nul for your device.

• Do not give GPIB device names the same names as files, directories, or
subdirectories. If you name a device pltr and your file system contains
the file pltr.dat or a subdirectory pltr , a conflict results.

• You cannot rename the access boards gpib0 , gpib1 , gpib2 , and gpib3 .

If you have pressed <F4 > and have then decided not to rename the device, press
<F4> again to abort the function.

ibconf—Interface Bus Configuration Utility Chapter 7

NI-488.2M SRM for OS/2 7-6 © National Instruments Corp.

(Dis)connect

Use <F5> to connect or disconnect a device to or from a particular access board.
Move the cursor to the device that is to be connected or disconnected by using
the cursor control keys and then pressing <F5>.

Edit

Use <F8> to edit or examine the characteristics of a particular board or device.
Move to the board or device that you want to edit by using the cursor control
keys and pressing <F8>. This places you in the description level of ibconf and
lists all the characteristics for the particular board or device that you want to edit.
To exit edit, use <F9> or <Esc>.

Exit

Use <F9> or <Esc> to exit ibconf . If you have made changes and have
pressed <F9> to exit, ibconf displays Save configuration? . Type y
(yes) to save the changes or n (no) to discard the changes. For more
information, refer to the Exiting ibconf section, which is located later in this
chapter.

If you have pressed <F9> and have then decided not to exit, press <F9> again to
abort the function.

Chapter 7 ibconf—Interface Bus Configuration Utility

© National Instruments Corp. 7-7 NI-488.2M SRM for OS/2

Description Level

The description-level screens of ibconf display current values, such
as addressing and timeout information, for device or board settings. See Figure
7-3.

Figure 7-3. Description Level of ibconf

You can access the description-level screens from the map level of ibconf by
selecting a board or device and pressing <F8>. You can use the <Up>, <Down>,
<PageUp>, and <PageDown> cursor keys to select a characteristic. For your
convenience, cursor control keys and function keys are defined at the bottom of
your computer screen.

Selecting the configuration settings for each device and board customizes the
communications and other options to be used with that board or device. These
settings are the characteristics used by the access board when device functions
are used to program the device or when board functions are used to program the
board.

The following options are available at the description level:

• Change Characteristics

• Next Board/Device

ibconf—Interface Bus Configuration Utility Chapter 7

NI-488.2M SRM for OS/2 7-8 © National Instruments Corp.

• Help

• Reset Value

• Return to Map

The following sections describe the options available in the description level of
ibconf .

Change Characteristics

To change a specific characteristic of a device or a board, first move your cursor
to the characteristic. If the double arrow symbol appears to the left of the input
field, use the left/right arrow keys to select between different options. If a
blinking cursor appears in the field, input the new value directly from the
keyboard. Instructions on the right half of the screen inform you about the
options for the characteristic.

Next Board/Device

If you are viewing the characteristics of a board, use <Ctrl-PageUp> and <Ctrl-
PageDown> to move to the characteristics screen for the previous or next board.
If you are viewing the characteristics of a device, use <Ctrl-PageUp> and <Ctrl-
PageDown> to move to the characteristics screen for the previous or next device.

Help

Use <F1> to access the comprehensive, online help feature of ibconf . The
help information describes the functions and common terms associated with the
description level of ibconf .

Reset Value

Use <F6> to reset the current characteristic to the value it contained when it was
last modified.

Return to Map

Use <F9> or <Esc> at the description level to return to the map level of
ibconf .

Chapter 7 ibconf—Interface Bus Configuration Utility

© National Instruments Corp. 7-9 NI-488.2M SRM for OS/2

Output Selection Level

Figure 7-4 shows the output selection level of ibconf.

Figure 7-4. Output Selection Level of ibconf

In the output selection level, you can select the configuration files that should be
updated by ibconf . To create or update a data file, respond yes to copy
changes to the data file. The data file confil.cf (the default name) is then
created or opened and the new configuration is stored into it.

If you select yes to copy changes to the memory resident driver, ibconf
updates the driver that is currently resident in memory. If you select yes to
copy changes to drivers on disk, ibconf updates the driver file on disk.

Board and Device Configuration Options

To view detailed information about each characteristic, position the cursor in the
field for that characteristic. For information on characteristics specific to a given
driver, check the getting-started manual that came with your interface board.
The following paragraphs describe the options available in ibconf for the NI-
488.2M software for OS/2.

ibconf—Interface Bus Configuration Utility Chapter 7

NI-488.2M SRM for OS/2 7-10 © National Instruments Corp.

Primary GPIB Address

All devices and boards must be assigned a unique primary address in the range
hex 00 to hex 1E (0 to 30 decimal). The default primary address of all GPIB
boards is 0.

The GPIB primary address of any device is set within the device, either with
hardware switches or a software program. The address set within the device
must correspond to the address in the memory-resident driver. In the NI-488.2M
driver for OS/2, the default primary addresses of dev1 through dev32 are 1
through 32, respectively. Refer to the device documentation for instructions
about setting the device address. GPIB boards do not have hardware switches to
select the GPIB address.

The primary GPIB address is used to compute the talk and listen addresses of
devices and boards. The NI-488.2M driver automatically forms a listen address
by adding hex 20 to the primary address and a talk address by adding hex 40 to
the primary address. For example, a primary address of hex 10 has a listen
address of hex 30 and a talk address of hex 50.

Secondary GPIB Address

Any device or board using extended addressing must be assigned a secondary
address in the range hex 60 to hex 7E (96 to 126 decimal), or the option NONE
may be selected to disable secondary addressing.

As with primary addressing, the secondary GPIB address of a device is set within
that device, either with hardware switches or a software program. The address
set within the device must correspond to the address in the memory-resident
driver. Refer to the device documentation for instructions about secondary
addressing. The default setting for this characteristic is NONE for all boards and
devices.

Timeout Setting

The timeout value is the approximate length of time that GPIB functions wait for
data to be transferred or commands to be sent. It is also the length of time that
the ibwait function waits for an event before returning, if the TIMO bit is set
in the event mask. For example, if the SRQI bit and TIMO bit in the event mask
are passed to the ibwait function and no SRQ is detected, the function
timeouts after the duration given by the timeout setting value. The default option
for this characteristic is 10 s.

Chapter 7 ibconf—Interface Bus Configuration Utility

© National Instruments Corp. 7-11 NI-488.2M SRM for OS/2

Terminate Read on EOS

Some devices send an EOS byte signaling the last byte of a data message.
A yes response in this field causes the GPIB board to terminate a read operation
when it receives the EOS byte. The default option for this characteristic is no .

Set EOI with EOS on Writes

A yes response in this field causes the GPIB board to assert the EOI line when
the EOS byte is detected on a write operation. The default option for this
characteristic is no .

Type of Compare on EOS

This field specifies the type of comparison to be made with the EOS byte. You
may state whether all eight bits are to be compared or just the seven least
significant bits (ASCII or ISO [International Standards Organization] format).
The default option for this characteristic is 7-bit .

Note: This field is valid only if a yes response was given for either the Set
EOI with EOS on Write field or the Terminate Read on EOS field.

EOS Byte

Some devices can be programmed to terminate a read operation when a selected
character is detected. A linefeed character (hex 0A) is a common EOS byte.
The default option for this characteristic is 00H.

Note: The driver does not automatically append an EOS byte to the end of
data strings on write operations. You must explicitly include this byte
in your data string. The EOS byte designation informs the driver of
its value so that I/O can terminate correctly.

ibconf—Interface Bus Configuration Utility Chapter 7

NI-488.2M SRM for OS/2 7-12 © National Instruments Corp.

Send EOI at End of Write

Some devices, as Listeners, require that the Talker terminate a data message by
asserting the EOI line with the last byte. A yes response causes the GPIB board
to assert the EOI line on the last data byte. The default option for this
characteristic is yes .

GPIB-Specific Errors

Boards and devices have a switch that specifies whether the NI-488.2M driver
returns OS/2 device errors or GPIB device errors when API IOCtl functions are
used. A no response causes the OS/2 API functions (except the status query
function) to return OS/2 device errors. If this option is set to yes , GPIB-specific
errors are returned on all API IOCtl functions. The default option for this
characteristic is yes.

System Controller (Board Characteristic Only)

This field appears on the board characteristics screen only. The System
Controller in a GPIB system is the device that maintains ultimate control over
the bus. In some situations, such as a network of computers linked by the GPIB,
another device may be System Controller and the GPIB board should be
designated as not System Controller. A no response would designate not
System Controller and a yes response would designate System Controller
capability. The GPIB board is usually designated as System Controller. The
default option for this characteristic is yes .

Note: You should not have more than one designated System Controller in
any GPIB system.

Assert REN when SC (Board Characteristic Only)

A yes response to this field causes Remote Enable (REN) to be asserted
automatically whenever the board is placed online, if that the board has System
Controller capability. If you give a no response, an explicit call to ibsre is
required to assert REN. The default option for this characteristic is no.

Chapter 7 ibconf—Interface Bus Configuration Utility

© National Instruments Corp. 7-13 NI-488.2M SRM for OS/2

Enable Auto Serial Polling (Board Characteristic Only)

This option enables or disables automatic serial polls of devices when the GPIB
Service Request (SRQ) line is asserted. Positive poll responses are stored
following the polls and can be read with the ibrsp device function. Normally,
this feature does not conflict with devices that conform to the IEEE 488 standard.
If there is a conflict with a device, a no response for this field disables this
feature. The default option for this characteristic is yes .

Enable CIC Protocol (Board Characteristic Only)

If a device-level NI-488 call is made after control has been passed to another
device, enabling this protocol causes the board to assert SRQ with a Serial Poll
status byte of hex 42. The current Controller must recognize that the board
wants to regain control. If the current Controller passes control back to the
board, the device call proceeds as intended. If control is not passed within the
timeout period, the ECIC error is returned. If the CIC protocol is disabled, ECIC
is returned immediately if a device call is made after control has been passed.
The default option for this characteristic is no.

Bus Timing (Board Characteristic Only)

This field specifies the T1 delay of the source handshake capability for the board.
This delay determines the minimum amount of time, after the data is placed on
the bus, that the board may assert DAV during a write or command operation. If
the total length of the GPIB cable length in the system is less than 15 m, the
value of 350 ns is appropriate. Other factors might affect the choice of the T1
delay, although they are unlikely to affect your system setup. Refer to the IEEE
488.1 standard, Section 5.2, for more information about these other factors. The
default for this option is 500 ns.

Parallel Poll Duration (Board Characteristic Only)

This field specifies the length of time the driver waits when conducting a parallel
poll. For a normal bus configuration (the Controller and devices on the same
bus), use the default duration of 2 µs. If you are using a GPIB bus extender in
transparent parallel poll mode, you should increase the poll duration to 10 µs so
that the bus extender can operate transparently to your applications.

ibconf—Interface Bus Configuration Utility Chapter 7

NI-488.2M SRM for OS/2 7-14 © National Instruments Corp.

Use This GPIB Interface (Board Characteristic Only)

If you do not want the driver to try to access a board at the selected base address
(because you do not have a board in the system), select no for this option. When
this field is set to no , the driver returns the EDVR error as soon as a program
tries to access the board. By default, access board gpib0 is enabled, and
gpib1 , gpib2 , and gpib3 are disabled.

Base I/O Address (Board Characteristic Only)

This field specifies the I/O address of the GPIB board. It must be set to the same
value as the base I/O address setting for the GPIB board. Setting the base I/O
address level is explained in the getting-started manual that you received with
your GPIB interface board.

Note: On Micro Channel systems, this field is Read Only and you can
change the I/O address only by booting the reference diskette.

DMA Channel (Board Characteristic Only)

This field specifies the DMA channel used by the GPIB board. It must be set to
the same value as the DMA channel (arbitration level for Micro Channel
systems) setting for the GPIB board. Setting the DMA channel is explained in
the getting-started manual that you received with your GPIB interface board.

Note: On Micro Channel systems, you can change the DMA channel only
by booting the reference diskette. However, you can enable or disable
the use of DMA with the ibconf utility .

Chapter 7 ibconf—Interface Bus Configuration Utility

© National Instruments Corp. 7-15 NI-488.2M SRM for OS/2

Interrupt Jumper Setting (Board Characteristic Only)

This field specifies the interrupt line used by the GPIB board. It must be set to
the same value as the interrupt level setting for the GPIB board. Setting the
interrupt level is explained in the getting-started manual that you received with
your GPIB board.

Note: On Micro Channel systems, you can change the interrupt level only by
booting the reference diskette. However, you can enable or disable the
use of interrupts with the ibconf utility.

DMA Transfer Mode (Board Characteristic Only)

This field specifies the DMA transfer mode of the GPIB board. Nearly all PC-
compatible computers can use Demand Mode DMA, which is the fastest DMA
mode. Certain newer machines, however, cannot use Demand Mode DMA;
these machines should use Single Cycle DMA. The default option for this
characteristic is Demand Mode DMA.

Note: This characteristic is not applicable to Micro Channel systems.

Serial Poll Timeout (Device Characteristic Only)

This timeout value controls the length of time the driver waits for a serial poll
response from a device. The IEEE 488 standard does not specify the length of
time a Controller should wait for the response byte. The default value of 1 s
should work for most devices. If you have problems with serial polls, try using a
longer timeout value.

Enable Repeat Addressing (Device Characteristic Only)

Normally, devices are not addressed each time a read or write operation is
performed. If no is selected, read or write operations do not readdress the
selected device if the same operation was just performed with that device. This
saves some time when you have several GPIB operations to perform after repeat
addressing. But it might be a problem for some older IEEE 488 devices that
require their GPIB address to be sent with each I/O operation. Select yes to
enable repeat addressing in such a situation. The default option for this
characteristic is no .

ibconf—Interface Bus Configuration Utility Chapter 7

NI-488.2M SRM for OS/2 7-16 © National Instruments Corp.

Default Configurations in ibconf

This section lists the default configuration values of the NI-488.2M driver.

• Thirty-two devices with symbolic names dev1 through dev32 .

• Four access boards with symbolic names gpib0 , gpib1 , gpib2 , and
gpib3 . You cannot change the access board names.

• Access board gpib0 is enabled. gpib1 , gpib2 , and gpib3 are disabled.

• The GPIB addresses of the first 16 devices are the same as the device
number. For example, dev1 is at address 1. These 16 devices are assigned
to the access board gpib0 .

• The remaining 16 devices (that is, devices 17 through 32) are assigned to the
access board gpib1 . Their GPIB addresses range from 1 through 16,
respectively. For example, dev17 is at address 1.

• Each GPIB interface board is System Controller for its independent bus and
has a GPIB address of 0.

• The END message is sent with the last byte of each data message to a
device. No EOS character is recognized.

• The time limit on I/O and wait function calls is set for 10 s.

• Each GPIB board and device is set to perform I/O transfers using DMA.

• Automatic serial polling is enabled.

• Each GPIB board and device is set to return GPIB-specific errors while
executing API-style calls.

• At the end of each NI-488.2 routine, the NI-488.2M driver leaves the bus in
its currently addressed state (IEEE 488.2 standard).

• The time limit for a serial poll is set for 1 s.

Chapter 7 ibconf—Interface Bus Configuration Utility

© National Instruments Corp. 7-17 NI-488.2M SRM for OS/2

Exiting ibconf

After you make any changes in ibconf , use <F9> or<Esc> to exit the program.
If you have made changes to device/board characteristics, device names, or
device connections, the program first displays the prompt Save
configuration? before exiting. Type a y (yes) to save changes or n (no) to
delete changes.

Before exiting, if not in expert mode, ibconf automatically checks for
situations, such as the following, that can cause problems:

• GPIB addressing conflicts between a device and its access board.

• GPIB boards not present in the host machine at the specified address.

• Timeouts disabled on a device or board.

• Interrupt level of a board is the same as another board.

If ibconf detects any problems, it notifies you and gives you the option of
either re-entering or exiting ibconf . To disable automatic checking, use expert
mode by entering the following command when you start ibconf :

ibconf -e

© National Instruments Corp. A-1 NI-488.2M SRM for OS/2

Appendix A
Status Word Conditions

This appendix gives a detailed description of the conditions reported in the status
word, ibsta . For information about how to use ibsta in your application
program, refer to Chapter 3, Developing Your Application.

If a function call returns an ENEB or EDVR error, all status word bits except the
ERR bit are cleared. These error codes indicate that it is not possible to obtain
the status of the GPIB board.

Each bit in ibsta can be set for device calls (dev), board calls (brd), or both
(dev, brd).

The following table lists the status word bits.

Mnemonic
Bit
Pos.

Hex
Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

Table A-1. Status Word (ibsta) Layout

Status Word Conditions Appendix A

NI-488.2M SRM for OS/2 A-2 © National Instruments Corp.

ERR (dev, brd)

ERR is set in the status word following any call that results in an error.
You can determine the particular error by examining the error variable iberr .
ERR is cleared following any call that does not result in an error. Appendix B,
Error Codes and Solutions, describes both error codes that are recorded in
iberr and possible solutions.

TIMO (dev, brd)

TIMO indicates that the timeout period has been exceeded. TIMO is set in the
status word following an ibwait call if the TIMO bit of the ibwait mask
parameter is set and the time limit expires. TIMO is also set following any
synchronous I/O functions (for example, ibrd , ibwrt , ibcmd , Send,
Receive , and SendCmds) if a timeout occurs during one of these calls. TIMO
is cleared in all other circumstances.

END (dev, brd)

END indicates that either the GPIB EOI line has been asserted or that the EOS
byte has been received if the software is configured to terminate a read on an
EOS byte. If the GPIB board is performing a shadow handshake as a result of
the ibgts function, any other function can return a status word with the END
bit set if the END condition occurs before or during that call. END is cleared
when any I/O operation is initiated.

Some applications may need to know the exact I/O read termination mode of a
read operation: EOI by itself, the EOS character by itself, or EOI plus the EOS
character. You can use the ibconfig function (option
IbcEndBitIsNormal) to enable a mode in which the END bit is set only
when EOI is asserted. If the I/O operation completes because of the EOS
character by itself, END is not set. The application should check the last byte of
the received buffer to see if it is the EOS character.

SRQI (brd)

SRQI indicates that some GPIB device is requesting service. SRQI is set
whenever the GPIB board is CIC, the GPIB SRQ line is asserted, and the
automatic serial poll capability is disabled. SRQI is cleared when the GPIB
board ceases to be the CIC or when the GPIB SRQ line is unasserted.

Appendix A Status Word Conditions

© National Instruments Corp. A-3 NI-488.2M SRM for OS/2

RQS (dev)

RQS appears in the status word only after a device-level call. RQS indicates that
one or more automatic serial poll response bytes are waiting in the device’s serial
poll response queue. Automatic serial poll responses are not stored in the
response queue unless they have bit 6 set.

An automatic serial poll occurs as a result of a call to ibwait , or it occurs
automatically if automatic serial polling is enabled. If the serial poll response
queue is not empty, ibrsp returns the oldest byte stored in the queue. To
empty the response queue, call ibrsp repeatedly until RQS is no longer set in
the device’s status word.

CMPL (dev, brd)

CMPL indicates the condition of I/O operations. It is set whenever an I/O
operation is complete. CMPL is cleared while the I/O operation is in progress.

LOK (brd)

LOK indicates whether the board is in a lockout state. While LOK is set, the
EnableLocal routine or ibloc function is inoperative for that board. LOK
is set whenever the GPIB board detects the Local Lockout (LLO) message has
been sent either by the GPIB board or by another Controller. LOK is cleared
when the System Controller unasserts the Remote Enable (REN) GPIB line.

Status Word Conditions Appendix A

NI-488.2M SRM for OS/2 A-4 © National Instruments Corp.

REM (brd)

REM indicates whether the board is in the remote state. REM is set whenever
the Remote Enable (REN) GPIB line is asserted and the GPIB board detects that
its listen address has been sent either by the GPIB board or by another
Controller. REM is cleared in the following situations:

• When REN becomes unasserted.

• When the GPIB board as a Listener detects that the Go to Local (GTL)
command has been sent either by the GPIB board or by another Controller.

• When the ibloc function is called while the LOK bit is cleared in the
status word.

CIC (brd)

CIC indicates whether the GPIB board is the Controller-In-Charge. CIC is set
when the SendIFC routine or ibsic function is executed while the GPIB
board is System Controller or when another Controller passes control to the
GPIB board. CIC is cleared whenever the GPIB board detects Interface Clear
(IFC) from the System Controller or when the GPIB board passes control to
another device.

ATN (brd)

ATN indicates the state of the GPIB Attention (ATN) line. ATN is set whenever
the GPIB ATN line is asserted and cleared when the ATN line is unasserted.

TACS (brd)

TACS indicates whether the GPIB board is addressed as a Talker. TACS is set
whenever the GPIB board detects its talk address (and secondary address, if
enabled) has been sent either by the GPIB board itself or by another Controller.
TACS is cleared whenever the GPIB board detects the Untalk (UNT) command,
its own listen address, a talk address other than its own talk address, or Interface
Clear (IFC).

Appendix A Status Word Conditions

© National Instruments Corp. A-5 NI-488.2M SRM for OS/2

LACS (brd)

LACS indicates whether the GPIB board is addressed as a Listener. LACS is set
whenever the GPIB board detects its listen address (and secondary address, if
enabled) has been sent either by the GPIB board itself or by another Controller.
LACS is also set whenever the GPIB board shadow handshakes as a result of the
ibgts function. LACS is cleared whenever the GPIB board detects the
Unlisten (UNL) command, its own talk address, Interface Clear (IFC), or ibgts
is called without shadow handshake.

DTAS (brd)

DTAS indicates whether the GPIB board has detected a device trigger command.
DTAS is set whenever the GPIB board, as a Listener, detects the Group Execute
Trigger (GET) command has been sent by another Controller. DTAS is cleared
on any call immediately following an ibwait call if the DTAS bit is set in the
ibwait mask parameter.

DCAS (brd)

DCAS indicates whether the GPIB board has detected a device clear command.
DCAS is set whenever the GPIB board detects the Device Clear (DCL)
command has been sent by another Controller or whenever the GPIB board as a
Listener detects the Selected Device Clear (SDC) command has been sent by
another Controller. DCAS is cleared on any call immediately following an
ibwait call if the DCAS bit was set in the ibwait mask parameter, or on any
call immediately following a read or write.

© National Instruments Corp. B-1 NI-488.2M SRM for OS/2

Appendix B
Error Codes and Solutions

This appendix lists a description of each error, some conditions under which
it might occur, and possible solutions.

The following table lists the GPIB error codes.

Table B-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 OS/2 error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as
required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem

Error Codes and Solutions Appendix B

NI-488.2M SRM for OS/2 B-2 © National Instruments Corp.

EDVR (0)

EDVR is returned when the device or board name passed in an ibfind call
is not configured in the software. In this case, the variable ibcntl
contains the OS/2 error code 2, Device not found, or error code 110, Open
failed.

EDVR is also returned when an invalid unit descriptor is passed to any
function call. In this case, the variable ibcntl contains the OS/2 error
code 6, Invalid handle.

EDVR is also returned when the driver (gpib.sys) is not installed.

Solutions

1. Use only device or board names that are configured in the software
utility ibconf as parameters in the ibfind function.

2. Use the unit descriptor returned from the ibfind function as the first
parameter in subsequent NI-488 functions. Examine the variable after
the ibfind and before the failing function to make sure it was not
corrupted.

3. Make sure the NI-488.2M driver is installed by checking the
gpibinst.inf file in the root directory.

4. Check the config.sys file in the root directory and make sure it
contains the following line:

DEVICE=dir \gpib.sys

where dir is the directory that contains the file gpib.sys .

Appendix B Error Codes and Solutions

© National Instruments Corp. B-3 NI-488.2M SRM for OS/2

ECIC (1)

ECIC is returned when one of the following board functions or routines is
called while the board is not CIC:

• Any of the NI-488.2 routines that issue GPIB command bytes:
SendCmds, PPoll , Send, Receive .

• Any board-level functions that issue GPIB command bytes: ibcmd ,
ibcmda , ibln , ibrpp .

• ibcac , ibgts .

• Any device-level functions that affect the GPIB.

Solutions

1. Use ibsic or SendIFC to make the GPIB board become CIC on the
GPIB.

2. Use ibrsc 1 or run ibconf and make sure your GPIB board is
configured as System Controller.

3. In multiple CIC situations, always be certain that the CIC bit appears in
the status word ibsta before attempting these calls. If the CIC bit
does not appear, you can perform an ibwait (for CIC) call to delay
further processing until control is passed to the board.

ENOL (2)

ENOL usually occurs when a write operation is attempted with no Listeners
addressed. For a device write, this error indicates that the GPIB address
configured for that device in the software does not match the GPIB address
of any device connected to the bus, that the GPIB cable is not connected to
the device, or that the device is not powered on.

ENOL can occur in situations in which the GPIB board is not the CIC and
the Controller asserts ATN before the write call in progress has ended.

Error Codes and Solutions Appendix B

NI-488.2M SRM for OS/2 B-4 © National Instruments Corp.

Solutions

1. Make sure that the GPIB address of your device matches the GPIB
address of the device you want to write data to.

2. If you are using board-level functions, make sure that your device is
properly addressed to listen before writing to it by using ibcmd or
sendsetup .

3. Use the appropriate hex code in ibcmd to address your device.

4. Check your cable connections and make sure at least two-thirds of your
devices are powered on.

5. Call ibpad (or ibsad , if necessary) to match the configured address
to the device switch settings.

6. Reduce the write byte count to that which is expected by the Controller.

EADR (3)

EADR occurs when the GPIB board is CIC and is not properly addressing
itself before read and write functions. This error is usually associated with
board-level functions.

EADR is also returned by the function ibgts when the shadow-handshake
feature is requested and the GPIB ATN line is already unasserted. In this
case, the shadow handshake is not possible and the error is returned to notify
you of that fact.

Solutions

1. Make sure that the GPIB board is addressed correctly before calling
ibrd or ibwrt .

2 Avoid calling ibgts except immediately after an ibcmd call (ibcmd
causes ATN to be asserted).

Appendix B Error Codes and Solutions

© National Instruments Corp. B-5 NI-488.2M SRM for OS/2

EARG (4)

EARG results when an invalid argument is passed to a function call. The
following are some examples:

• ibtmo called with a value not in the range 0 through 17.

• ibeos called with meaningless bits set in the high byte of the second
parameter.

• ibpad or ibsad called with invalid addresses.

• ibppc called with invalid parallel poll configurations.

• A board-level function made with a valid device descriptor, or a
device-level function made with a board descriptor.

• An NI-488.2 routine called with an invalid address.

• PPollConfig called with an invalid data line or sense bit.

• Termination parameter in RcvRespMsg and Receive is neither
STOPend or an 8-bit EOS character.

• eotmode parameter in Send, SendDataBytes , and SendList is
not DABend, NULLend, or NLend.

• In Send, SendDataBytes , or SendList routine, eotmode is
DABend and datacnt is 0.

Solutions

1. Make sure that the parameters passed to the NI-488 function or NI-488.2
routine are valid.

2. Do not use a device descriptor in a board function or vice versa.

ESAC (5)

ESAC results when ibsic , ibsre , SendIFC , or EnableRemote is
called when the GPIB board does not have System Controller capability.

Error Codes and Solutions Appendix B

NI-488.2M SRM for OS/2 B-6 © National Instruments Corp.

Solutions

1. Give the GPIB board System Controller capability by calling ibrsc or
by using ibconf to configure that capability into the software.

EABO (6)

EABO indicates that an I/O operation has been canceled—usually because
of a timeout condition. Other causes are calling ibstop or receiving the
Device Clear message from the CIC while performing an I/O operation.

Frequently, the I/O is not progressing (the Listener is not continuing to
handshake or the Talker has stopped talking), or the byte count in the call
which timed out was more than the other device was expecting.

Solutions

1. Use the correct byte count in input functions or have the Talker use the
END message to signify the end of the transfer.

2. Lengthen the timeout period for the I/O operation using ibtmo .

3. Make sure that you have configured your device to send data before you
request data.

ENEB (7)

ENEB occurs when a GPIB board does not exist at the I/O address specified
in the configuration program. This situation happens when the board is not
physically plugged into the system, the I/O address specified during
configuration does not match the actual board setting, or there is a conflict in
the system with the base I/O address.

Solutions

1. Make sure a GPIB board is in your computer that is configured both in
hardware and software at a free base I/O address.

2. Make sure that the Use this GPIB Interface field in ibconf
is set to Yes.

Appendix B Error Codes and Solutions

© National Instruments Corp. B-7 NI-488.2M SRM for OS/2

EOIP (10)

EOIP occurs when an asynchronous I/O operation has not finished before
some other call is made. During asynchronous I/O, you can use only
ibstop , ibwait , and ibonl . If any other call is attempted, EOIP is
returned.

With the asynchronous I/O calls (ibcmda , ibrda , ibwrta), your
application can perform additional non-GPIB operations while the I/O is in
progress. Once the asynchronous I/O has begun, further GPIB calls other
than ibstop , ibwait , or ibonl are strictly limited. If a call interferes
with the I/O operation in progress, it causes the driver to return EOIP.

Solutions

1. Resynchronize the driver and the application before making any
further GPIB calls. Resynchronization is accomplished by using one
of the following three functions:

• ibwait If the returned ibsta contains CMPL, the driver and
application are resynchronized.

• ibstop The I/O is canceled; the driver and application are
resynchronized.

• ibonl The I/O is canceled and the interface is reset; the driver
and application are resynchronized.

ECAP (11)

ECAP results when your GPIB board lacks the ability to carry out an
operation or when a particular capability has been disabled in the software
and a call is made that requires the capability.

Solutions

1. Check the validity of the call, or make sure your GPIB interface board
and the driver both have the needed capability.

Error Codes and Solutions Appendix B

NI-488.2M SRM for OS/2 B-8 © National Instruments Corp.

EFSO (12)

EFSO results when an ibrdf or ibwrtf call encounters a problem
performing a file operation. Specifically, this error indicates that the
function is unable to open, create, seek, write, or close the file being
accessed.

Solutions

1. Make sure the filename, path, and drive that you specified are correct.

2. Make sure that the access mode of the file is correct.

3. Make sure there is enough room on the disk to hold the file.

EBUS (14)

EBUS results when certain GPIB bus errors occur during device functions.
All device functions send command bytes to perform addressing and other
bus management. Devices are expected to accept these command bytes
within the time limit specified by the configuration program or by ibtmo .
EBUS results if a timeout occurred during the sending of these command
bytes.

Solutions

1. Verify that the instrument is operating correctly.

2. Check for loose or faulty cabling or several powered off instruments
on the GPIB.

3. If the timeout period is too short for the driver to send command bytes,
increase the timeout period.

Appendix B Error Codes and Solutions

© National Instruments Corp. B-9 NI-488.2M SRM for OS/2

ESTB (15)

ESTB occurs only during the ibrsp function. ESTB indicates that auto
polling was not done for a device whose serial poll response queue was full.
Several older status bytes are available; however, the oldest is being
returned by the ibrsp call.

Solutions

1. Call ibrsp more frequently to empty the queue.

2. Disable autopolling with the ibconfig function or the ibconf
utility.

ESRQ (16)

ESRQ occurs only during the WaitSRQ routine or ibwait function.
ESRQ indicates that the GPIB SRQ line is stuck on. This situation can be
caused by the following events:

• Usually, a device unknown to the software is asserting SRQ. Because
the software does not know of this device, it can never serial poll the
device and unassert SRQ.

• A GPIB bus tester or similar equipment might be forcing the SRQ line
to be asserted.

• A cable problem, involving the SRQ line, might exist.

• The serial poll response queue of a device that is asserting the SRQ line
is full.

Although the occurrence of ESRQ warns you of a definite GPIB problem, it
does not affect GPIB operations, except that you cannot depend on the RQS
bit while the condition lasts.

Solutions

1. Check to see whether other devices not used by your application are
asserting SRQ. Disconnect them from the GPIB if necessary.

2. Call ibrsp for the device whose serial poll queue is full.

Error Codes and Solutions Appendix B

NI-488.2M SRM for OS/2 B-10 © National Instruments Corp.

ETAB (20)

ETAB occurs only during the FindLstn and FindRQS routines. ETAB
indicates that there was some problem with a table used by these functions.

• In the case of FindLstn , ETAB means that the given table did not
have enough room to hold all the addresses of the Listeners found.

• In the case of FindRQS, ETAB means that none of the devices in the
given table were requesting service.

Solutions

1. Increase the size of result arrays for FindLstn and FindRQS.

© National Instruments Corp. C-1 NI-488.2M SRM for OS/2

Appendix C
Customer Communication

For your convenience, this appendix contains forms to help you gather the
information necessary to help us solve technical problems you might have
as well as a form you can use to comment on the product documentation.
Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around
the world. In the U.S. and Canada, applications engineers are available
Monday through Friday from 8:00 a.m. to 6:00 p.m. (central time). In other
countries, contact the nearest branch office. You may fax questions to us at
any time.

Corporate Headquarters
(512) 795-8248
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices Phone Number Fax Number
Australia (03) 879 9422 (03) 879 9179
Austria (0662) 435986 (0662) 437010-19
Belgium 02/757.00.20 02/757.03.11
Denmark 45 76 26 00 45 76 71 11
Finland (90) 527 2321 (90) 502 2930
France (1) 48 14 24 00 (1) 48 14 24 14
Germany 089/741 31 30 089/714 60 35
Italy 02/48301892 02/48301915
Japan (03) 3788-1921 (03) 3788-1923
Mexico 95 800 010 0793 95 800 010 0793
Netherlands 03480-33466 03480-30673
Norway 32-848400 32-848600
Singapore 22658862265887
Spain (91) 640 0085 (91) 640 0533
Sweden 08-730 49 70 08-730 43 70
Switzerland 056/20 51 51 056/20 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 0635 523545 0635 523154

Technical Support Form

Technical support is available at any time by fax. Include the information
from the configuration form in your Getting Started Manual. Use additional
pages if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand

Model Processor

Operating system

Speed MHz RAM MB

Display adapter

Mouse yes no

Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model

Revision

Configuration

(continues)

National Instruments software product

Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Documentation Comment Form

National Instruments encourages you to comment on the documentation
supplied with our products. This information helps us provide quality
products to meet your needs.

Title: NI-488.2M™ Software Reference Manual for OS/2

Edition Date: January 1995

Part Number: 370950A-01

Please comment on the completeness, clarity, and organization of the
manual.

(continues)

If you find errors in the manual, please record the page numbers and
describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02
Austin, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
MS 53-02
(512) 794-5678

© National Instruments Corp. G-1 NI-488.2M SRM for OS/2

Glossary

Prefix Meaning Value

n-
µ-
m-
k-
M-

nano-
micro-
milli-
kilo-
mega-

10-9

10-6

10-3

103

106

A

Acceptor Handshake A GPIB interface function that receives data or
commands. Listeners use this function to receive
data, and all devices use it to receive commands.
See Source Handshake and Handshake.

Access Board The GPIB board that controls and communicates
with the devices on the bus that are attached to it.

ANSI American National Standards Institute

API Application Program Interface

ASCII American Standard Code for Information
Interchange

Asynchronous An action or event that occurs at an
unpredictable time with respect to the execution
of a program.

ATN (Attention) A GPIB line that distinguishes between
commands and data messages. When ATN is
asserted, bytes on the GPIB DIO lines are
commands.

Glossary

NI-488.2M SRM for OS/2 G-2 © National Instruments Corp.

Automatic Serial Polling A feature of the NI-488.2M software in which
(Autopolling) serial polls are executed automatically by the

driver whenever a device asserts the GPIB SRQ
line.

B

Board Function A function that operates on or otherwise pertains
to one of the GPIB interface boards in the
computer.

C

CIC See Controller-In-Charge.

config.sys An OS/2 file that contains the names of the
loadable device driver or driver programs that
OS/2 loads when it is started up.

Controller-In-Charge The device that manages the GPIB by sending
(CIC) interface messages to other devices.

D

DAV (Data Valid) One of the three GPIB handshake lines. See
Handshake.

DCL Device Clear is the GPIB command used to reset
the device or internal functions of all devices.
See SDC.

Declaration File A file containing definitions that must be placed
at the beginning of an application program.
decl.h is the declaration file for C programs
using the NI-488 functions and NI-488.2
routines. See Language Interface.

Device Clear See DCL.

Glossary

© National Instruments Corp. G-3 NI-488.2M SRM for OS/2

Device Function A function that operates on or otherwise pertains
to a GPIB device rather than to the GPIB
interface board in the computer. See Board
Function.

DIO1 through DIO8 The GPIB lines that are used to transmit
command or data bytes from one device to
another.

DLL dynamic link library

DMA High-speed data transfer between the GPIB
(direct memory access) board and memory that is not handled directly by

the CPU. Not available on some systems. See
Programmed I/O.

Driver Device driver software installed within the
operating system. Same as an OS/2-installed
device driver.

DVM digital voltmeter

E

END or END Message A message that signals the end of a data string.
END is sent by asserting the GPIB End or
Identify (EOI) line with the last data byte.

EOI A GPIB line that is used to signal either the last
byte of a data message (END) or the parallel poll
Identify (IDY) message.

EOS or EOS Byte A 7- or 8-bit end-of-string character that is sent
as the last byte of a data message.

EOT end of transmission

Glossary

NI-488.2M SRM for OS/2 G-4 © National Instruments Corp.

G

GET Group Execute Trigger is the GPIB command
used to trigger a device or internal function of an
addressed Listener.

Go To Local See GTL.

GPIB General Purpose Interface Bus is the common
name for the communications interface system
defined in ANSI/IEEE Standard 488.1-1987 and
ANSI/IEEE Standard 488.2-1987.

GPIB Address The address of a device on the GPIB, composed
of a primary address (MLA and MTA) and
perhaps a secondary address (MSA). The GPIB
board has both a GPIB address and an I/O
address.

GPIB Board Refers to the National Instruments family of
GPIB interface boards.

gpib.sys The NI-488.2M driver file name.

Group Executed Trigger See GET.

GTL Go To Local is the GPIB command used to place
an addressed Listener in local (front panel)
control mode.

H

Handshake The mechanism used to transfer bytes from the
Source Handshake function of one device to the
Acceptor Handshake function of another device.
The three GPIB lines, DAV, NRFD, and NDAC,
are used in an interlocked fashion to signal the
phases of the transfer, so that bytes can be sent
asynchronously—for example, without a clock—
at the speed of the slowest device.

hex hexadecimal

Glossary

© National Instruments Corp. G-5 NI-488.2M SRM for OS/2

High-Level Function A device function that combines several
rudimentary board operations into one function
so that the user does not have to be concerned
with bus management or other GPIB protocol
matters. See Low-Level Function.

Hz hertz

I

ibcnt After each NI-488.2M I/O function, this global
variable contains the actual number of bytes
transmitted.

ibconf The NI-488.2M driver configuration program.

iberr A global variable that contains the specific error
code associated with a function call that failed.

ibic The Interface Bus Interactive Control program is
used to communicate with GPIB devices,
troubleshoot problems, and develop your
application.

ibsta At the end of each function call, this global
variable (status word) contains status
information.

IFC or Interface Clear A GPIB line used by the System Controller to
initialize the bus. See DCL and SDC.

Interface Message A broadcast message sent from the Controller to
all devices and used to manage the GPIB.

I/O (Input/Output) In the context of this manual, the transmission of
commands or messages between the computer
via the GPIB board and other devices on the
GPIB.

Glossary

NI-488.2M SRM for OS/2 G-6 © National Instruments Corp.

I/O Address The address of the GPIB board from the point of
view of the CPU, as opposed to the GPIB
address of the GPIB board. Also called port
address or board address.

ist An Individual Status bit of the status byte used in
the Parallel Poll Configure function.

L

LAD or Listen Address See MLA.

Language Interface Code that enables an application program that
uses NI-488.2M functions or NI-488.2M routines
to access the driver.

Listen Address See MLA.

Listener A GPIB device that receives data messages from
a Talker.

LLO Local Lockout is the GPIB command used to tell
all devices that they may or should ignore remote
(GPIB) data messages or local (front panel)
controls, depending on whether the device is in
local or remote program mode.

Low-Level Function A rudimentary board or device function that
performs a single operation. See High-Level
Function.

M

Make File Utility that compiles and links programs.

MB Megabytes of memory.

Memory-Resident Resident in RAM.

MLA A GPIB command used to address a device to be
(My Listen Address) a Listener. There are 31 primary addresses.

Glossary

© National Instruments Corp. G-7 NI-488.2M SRM for OS/2

MSA My Secondary Address is the GPIB command
used to address a device to be a Listener or a
Talker when extended (two byte) addressing is
used. The complete address is an MLA or MTA
address followed by an MSA address. There are
31 secondary addresses for a total of 961 distinct
listen or talk addresses for devices.

MTA (My Talk Address) A GPIB command used to address a device to be
a Talker. There are 31 primary addresses.

Multitasking The concurrent processing of more than one
program or task. OS/2 provides a multitasking
environment so that multiple applications can
execute at the same time.

N

NDAC One of the three GPIB handshake lines. See
(Not Data Accepted) Handshake.

NRFD One of the three GPIB handshake lines. See
(Not Ready For Data) Handshake.

O

Open Device or Board One that has been enabled or placed online by a
system or language open function.

P

Parallel Poll The process of polling all configured devices at
once and reading a composite poll response. See
Serial Poll.

PIO See Programmed I/O.

Glossary

NI-488.2M SRM for OS/2 G-8 © National Instruments Corp.

PPC Parallel Poll Configure is the GPIB command
(Parallel Poll Configure) used to configure an addressed Listener to

participate in polls.

PPD Parallel Poll Disable is the GPIB command used
(Parallel Poll Disable) to disable a configured device from participating

in polls. There are 16 PPD commands.

PPE Parallel Poll Enable is the GPIB command used
(Parallel Poll Enable) to enable a configured device to participate in

polls and to assign a DIO response line. There
are 16 PPE commands.

PPU Parallel Poll Unconfigure is the GPIB command
(Parallel Poll used to disable any device from participating in
Unconfigure) polls.

Programmed I/O Low-speed data transfer between the GPIB board
and memory in which the CPU moves each data
byte according to program instructions. See
DMA.

R

RAM random-access memory

REN (Remote Enable) A GPIB line controlled by the System Controller
but used by the CIC to place devices in remote
program mode.

RQS Request Service

S

s seconds

SDC Selected Device Clear is the GPIB command
used to reset internal or device functions of an
addressed Listener. See DCL and IFC.

Glossary

© National Instruments Corp. G-9 NI-488.2M SRM for OS/2

Serial Poll The process of polling and reading the status
byte of one device at a time. See Parallel Poll.

Service Request See SRQ.

Source Handshake The GPIB interface function that transmits data
and commands. Talkers use this function to send
data, and the Controller uses it to send
commands. See Acceptor Handshake and
Handshake.

SPD Serial Poll Disable is the GPIB command used to
(Serial Poll Disable) cancel an SPE command.

SPE Serial Poll Enable is the GPIB command used to
(Serial Poll Enable) enable a specific device to be polled. That

device must also be addressed to talk. See SPD.

SRQ (Service Request) The GPIB line that a device asserts to notify the
CIC that the device needs servicing.

Status Byte The data byte sent by a device when it is serially
polled.

Status Word See ibsta.

Synchronous Refers to the relationship between the
NI-488.2M driver functions and a process when
executing driver functions is predictable; the
process is blocked until the OS/2 driver
completes the function.

System Controller The single-designated Controller that can assert
control (become CIC of the GPIB) by sending
the Interface Clear (IFC) message. Other
devices can become CIC only by having control
passed to them.

Glossary

NI-488.2M SRM for OS/2 G-10 © National Instruments Corp.

T

TAD (Talk Address) See MTA.

Talker A GPIB device that sends data messages to
Listeners.

TCT Take Control is the GPIB command used to pass
control of the bus from the current Controller to
an addressed Talker.

Timeout A feature of the NI-488.2M driver that prevents
I/O functions from hanging indefinitely when
there is a problem on the GPIB.

TLC An integrated circuit that implements most of the
GPIB Talker, Listener, and Controller functions
in hardware.

U

ud (unit descriptor) A variable name and first argument of each
function call that contains the unit descriptor of
the GPIB interface board or other GPIB device
that is the object of the function.

UNL Unlisten is the GPIB command used to
unaddress any active Listeners.

UNT Untalk is the GPIB command used to unaddress
an active Talker.

© National Instruments Corp. I-1 NI-488.2M SRM for OS/2

Index

Numbers/Symbols

! (repeat previous function), ibic
utility, 5-21

$ (execute indirect file) function,
ibic utility, 5-23

+ (turn on display) function, ibic
utility, 5-21 to 5-22

- (turn off display) function, ibic
utility, 5-21 to 5-22

A

addresses
base I/O address, 7-14
ENEB error code, B-6
ENOL error code, B-3 to B-4
primary GPIB address, 7-10
secondary GPIB address, 7-10

addressing
enable repeat addressing, 7-15
repeat addressing, 4-6

AllSpoll function, 6-6, 6-7, 6-8
ANSI/IEEE Standard

488.1-1987, 1-5
ANSI/IEEE Standard

488.2-1987, 1-5
API interface. See OS/2 API

interface.
application examples

asynchronous I/O, 2-6 to 2-7
basic communication, 2-2

to 2-3
with IEEE 488.2 compliant

devices, 2-14 to 2-15
clearing and triggering devices,

2-4 to 2-5
end-of-string mode, 2-8 to 2-9
files on distribution disk, 1-1 to

1-2, 2-1

non-controller, 2-21 to 2-22
parallel polls, 2-18 to 2-20
serial polls using NI-488.2

routines, 2-16 to 2-17
service requests, 2-10 to 2-13

applications, debugging
checking global variable

status, 4-3
communication errors, 4-6
configuration errors, 4-4
GPIB error codes, 4-3 to 4-4
ibic, 4-3
ibtest, 4-1 to 4-2
reconfiguring NI-488.2M

software, 4-5
repeat addressing, 4-6
termination method, 4-6
timing errors, 4-5

applications, writing. See also
application examples.

choosing programming method,
3-1 to 3-4

compiling and linking programs
16-bit C applications, 3-21
32-bit C applications, 3-20

to 3-21
ibic for communicating with

devices, 3-7
NI-488 applications, 3-7 to 3-12

clearing devices, 3-10
configuring devices, 3-10
items to include, 3-7
NI-488 program shell, 3-8
opening devices, 3-9
placing devices

offline, 3-12
processing data, 3-12
reading measurement, 3-12
triggering devices, 3-10

to 3-11

Index

NI-488.2M SRM for OS/2 I-2 © National Instruments Corp.

waiting for
measurement, 3-11

NI-488.2 applications, 3-13
to 3-20

configuring
instruments, 3-17

finding all listeners, 3-15
identifying

instruments, 3-16
initialization, 3-15
initializing

instruments, 3-17
items to include, 3-13
NI-488.2 program

shell, 3-14
placing board offline, 3-20
processing data, 3-19
reading measurement, 3-19
triggering

instruments, 3-18
waiting for measurement,

3-18 to 3-19
NI-488.2 language interface,

3-1 to 3-4
advantages, 3-1 to 3-2
NI-488 functions, 3-2

to 3-3
NI-488.2 routines, 3-3

to 3-4
OS/2 API interface, 3-4
running applications, 3-21
status checking using global

variables, 3-4 to 3-6
ibcnt and ibcntl (count

variables), 3-6
iberr (error variable), 3-6
ibsta (status word), 3-4

to 3-5
asynchronous I/O

EOIP error code, B-7
example, 2-6 to 2-7

AT-GPIB boards, ibtest checking of,
4-1 to 4-2

ATN (attention) line (table), 1-7

ATN status, A-4
automatic serial polling

enabling, 7-13
interrupts and, 6-5
procedure for, 6-4 to 6-5
stuck SRQ state and, 6-5

auxiliary functions, ibic. See ibic
utility.

B

base I/O address, 7-14
board configuration. See ibconf

utility.
board functions. See NI-488

functions.
boards

disabling access to, 7-14
ibtest checking of

AT-GPIB boards, 4-1
to 4-2

GPIB boards, 4-2
bus management, 6-2 to 6-3
bus timing, configuring, 7-13

C

cables, ibtest checking of, 4-2
CIC. See Controller-in-Charge.
CIC status, A-4
clearing and triggering devices

(example), 2-4 to 2-5
CMPL status, A-3
communication errors

repeat addressing, 4-6
termination method, 4-6

communication examples
basic communication with IEEE

488.2 compliant devices, 2-14
to 2-15

Index

© National Instruments Corp. I-3 NI-488.2M SRM for OS/2

communication between host
and GPIB device, 2-2 to 2-3

compiling applications
16-bit C applications, 3-21
32-bit C applications, 3-20

to 3-21
configuration errors, 4-4
configuration of GPIB systems, 1-7

to 1-9. See also ibconf utility.
Controller-in-Charge

activating CIC protocol,
6-3, 7-13

CIC status, A-4
configuring GPIB board as, 6-2

to 6-3
definition, 1-6
EADR error code, B-4
ECIC error code, B-3

Controllers. See also System
Controller.

definition, 1-5
non-controller (example), 2-21

to 2-22
controlling more than one board, 1-9
count return, by ibic, 5-10
count variables. See ibcnt and ibcntl

(count variables).
customer communication, xv, C-1

D

data lines, GPIB, 1-6
data transfer termination methods, 6-

1 to 6-2
DAV (data valid) handshake line

(table), 1-6
DCAS status, A-5
debugging applications. See

applications, debugging.
default configurations in

ibconf, 7-16

description level of ibconf utility.
See ibconf utility.

DevClear routine, 3-17
developing applications. See

applications, writing.
device configuration. See ibconf

utility.
device functions. See NI-488

functions.
device-level calls, 6-2 to 6-3
devices

clearing, 3-10
configuring, 3-10
DCAS status, A-5
DTAS status, A-5
opening, 3-9, 5-13 to 5-16
placing offline, 3-12
triggering, 3-10 to 3-11

DMA channel, configuring, 7-14
documentation

conventions used in manual, xii-
xiii

organization of manual, xi-xii
related documentation, xv
using the manual set, xiv

driver utilities, 1-1
DTAS status, A-5

E

EABO error code, B-6
EADR error code, B-4
EARG error code, 5-15, B-5
EBUS error code, B-8
ECAP error code, B-7
ECIC error code, 6-3, B-3
EDVR error code, 5-15, B-2
EFSO error code, B-8
end of string (EOS)

adding characters in ibic, 5-9
end-of-string mode (example),

2-8 to 2-9

Index

NI-488.2M SRM for OS/2 I-4 © National Instruments Corp.

END status, A-2
EOS byte, 7-11
EOS mode configuration, 6-1

to 6-2
terminate read on EOS, 7-11
type of compare on EOS, 7-11

end of transmission (EOT)
mode, 6-1

end or identify (EOI) line. See EOI
(end or identify) line.

END status, A-2
ENEB error code, 5-15, B-6
ENOL error code, B-3 to B-4
EOI (end or identify) line

description (table), 1-7
END status, A-2
send EOI at end of write, 7-12
set EOI with EOS on

writes, 7-11
terminating data transfers, 6-1

EOIP error code, B-7
EOS. See end of string (EOS).
EOS byte, 7-11
EOT mode, 6-1
ERR status, A-2
error codes. See also ibsta (status

word).
EABO, B-6
EADR, 5-15, B-4
EARG, B-5
EBUS, B-8
ECAP, B-7
ECIC, 6-3, B-3
EDVR, 5-15, B-2
EFSO, B-8
ENEB, 5-15, B-6
ENOL, B-3 to B-4
EOIP, B-7
ESAC, B-5 to B-6
ESRQ, B-9
ESTB, B-9
ETAB, B-10
GPIB, 4-3 to 4-4
returned by ibic, 5-10

summary (table), B-1
error variable (iberr). See iberr

(error variable).
errors

communication errors, 4-6
repeat addressing, 4-6
termination method, 4-6

configuration errors, 4-4
GPIB-specific errors,

selecting, 7-12
timing errors, 4-5

ESAC error code, B-5 to B-6
ESB (Event Status) bit, 6-4
ESRQ error code, 6-5, B-9
ESTB error code, B-9
ETAB error code, B-10
Event Status bit (ESB), 6-4
examples. See application

examples.
execute indirect file ($) function,

ibic utility, 5-23

F

files for NI-488.2M software. See
NI-488.2M software.

FindLstn routine, 3-15
FindRQS function, 6-7, 6-8
functions. See NI-488 functions.

G

General Purpose Interface Bus
(GPIB). See GPIB operation;
GPIB programming.

global variables
checking status, 3-4 to 3-6
debugging applications, 4-3
ibcnt and ibcntl (count

variables), 3-6, 4-3
iberr (error variable), 3-6, 4-3

Index

© National Instruments Corp. I-5 NI-488.2M SRM for OS/2

ibsta (status word), 3-4 to 3-5,
4-3, A-1 to A-5

GPIB boards, ibtest checking of, 4-2
GPIB cables, ibtest checking of, 4-2
GPIB operation, 1-5 to 1-9

controlling more than one
board, 1-9

data lines, 1-6
handshake lines, 1-6
IEEE 488 standard, 1-5
interface management lines, 1-7
sending messages, 1-6 to 1-7
setting up and configuring, 1-7

to 1-9
talkers, listeners, and

controllers, 1-5
GPIB programming

bus management, 6-2 to 6-3
device-level calls, 6-2 to 6-3
parallel polling

implementation of, 6-9
to 6-12

with NI-488 functions,
6-10 to 6-12

with NI-488.2 routines, 6-9
to 6-10

serial polling
automatic, 6-4 to 6-5
service requests

from IEEE 488
devices, 6-3

from IEEE 488.2
devices, 6-4

SRQ and serial polling
with NI-488 device

functions, 6-6
with NI-488.2 routines,

6-6 to 6-8
termination of data transfers,

6-1 to 6-2
waiting for GPIB

conditions, 6-2

H

handshake lines
DAV (table), 1-6
NDAC (table), 1-6
NRFD (table), 1-6
overview, 1-6

Help function, ibic utility
** caps ?? **, 5-20

I

ibclr function, 3-10
ibcnt and ibcntl (count variables)

debugging applications, 4-3
description, 3-6

ibconf utility
activating CIC protocol, 6-3
board and device configuration

options
assert REN when SC, 7-12
base I/O address, 7-14
bus timing, 7-13
DMA channel, 7-14
enable auto serial

polling, 7-13
enable CIC protocol, 7-13
enable repeat

addressing, 7-15
EOS byte, 7-11
GPIB-specific errors, 7-12
interrupt jumper

setting, 7-15
parallel poll duration, 7-13
primary GPIB

address, 7-10
secondary GPIB

address, 7-10
send EOI at end of

write, 7-12
serial poll timeout, 7-15

Index

NI-488.2M SRM for OS/2 I-6 © National Instruments Corp.

set EOI with EOS on
writes, 7-11

System Controller, 7-12
terminate read on

EOS, 7-11
timeout setting, 7-10
type of compare on

EOS, 7-11
use this GPIB

interface, 7-14
default configurations, 7-16
description level

change characteristics
option, 7-8

help option, 7-8
illustration, 7-7
next board/device

option, 7-8
overview, 7-7
reset value option, 7-8
return to map option, 7-8

exiting, 7-17
input selection level, 7-2 to 7-3
map level

device map of boards
option, 7-5

(dis)connect option, 7-6
edit option, 7-6
exit option, 7-6
help option, 7-5
illustration, 7-4
purpose, 7-4
rename option, 7-5

output selection level, 7-9
overview, 7-1
starting, 7-1

ibconfig function
activating CIC protocol, 6-3
autopolling, 6-4
determining EOI line

assertion, 6-2
dynamic configuration of

drivers, 7-1

reconfiguring NI-488.2M
software, 4-5

ibdev function
EARG error, 5-15
EDVR error, 5-15
ENEB error, 5-15
ibic utility, 5-13 to 5-16
opening devices, 3-9
parallel polling, 6-11

ibeos function, 6-1
ibeot function, 6-1
iberr (error variable)

debugging applications, 4-3
description, 3-6

ibfind function
ibic utility, 5-13
opening devices, 3-9

ibic utility
auxiliary functions, 5-18

to 5-24
! (repeat previous

function), 5-21
$ (execute indirect

file), 5-23
+ (turn on display), 5-21

to 5-22
- (turn off display), 5-21

to 5-22
Help, 5-20
n* (repeat function n

times), 5-22 to 5-23
print (display ASCII

string), 5-24
Set, 5-11, 5-19 to 5-20
summary (table), 5-18

to 5-19
communicating with

devices, 3-7
count return, 5-10
debugging applications, 4-3
end-of-string characters, 5-9
error codes return, 5-10
examples

Index

© National Instruments Corp. I-7 NI-488.2M SRM for OS/2

NI-488 board functions,
5-31 to 5-35

NI-488 device functions,
5-28 to 5-30

NI-488.2 routines, 5-24
to 5-27

exiting, 5-2
NI-488 functions

common functions, 5-13
to 5-17

ibdev, 5-13 to 5-16
ibfind, 5-13
ibrd, 5-17
ibwrt, 5-16
syntax, 5-3 to 5-4

NI-488.2 routines
common routines, 5-11

to 5-12
Receive, 5-12
Send, 5-11 to 5-12
syntax, 5-5 to 5-6

overview, 5-1
starting, 5-1 to 5-2
status word return, 5-9
syntax, 5-2 to 5-8

NI-488 functions, 5-3
to 5-4

NI-488.2 routines, 5-5
to 5-6

notes, 5-7 to 5-8
ibist function, 6-11
ibonl function, 3-12, 3-20
ibppc function, 6-10 to 6-12
ibrd function

ibic utility, 5-17
reading measurements, 3-12

ibrpp function, 6-12
ibrsp function

autopolling, 6-4 to 6-5
serial polling, 6-6

ibsta (status word)
ATN status, A-4
CIC status, A-4
CMPL status, A-3

DCAS status, A-5
debugging applications, 4-3
description, 3-4 to 3-5
DTAS status, A-5
END status, A-2
ERR status, A-2
LACS status, A-5
layout (table), 3-5
LOK status, A-3
REM status, A-4
returned by ibic, 5-9
RQS status, A-3
SRQI status, A-2
summary (table), A-1
TACS status, A-4
TIMO status, A-2

ibtest, 4-1 to 4-2
GPIB cables connected, 4-2
incorrect interrupt level, 4-2
presence test

of driver, 4-1 to 4-2
of GPIB board, 4-1 to 4-2

ibtrg function, 3-10
ibwait function

clearing stuck SRQ
condition, 6-5

purpose and use, 6-2
serial polling, 6-6
waiting for measurements, 3-11

ibwrt function
configuring devices, 3-10
ibic utility, 5-16

IEEE 488 standards, 1-5
IFC (interface clear) interface

management line (table), 1-7
input selection level of ibconf

utility. See ibconf utility.
instruments

configuring, 3-17
identifying, 3-16
initializing, 3-17
triggering, 3-18

Interface Bus Interactive Control
utility. See ibic utility.

Index

NI-488.2M SRM for OS/2 I-8 © National Instruments Corp.

interface management lines (table)
ATN, 1-7
EOI, 1-7
IFC, 1-7
REN, 1-7
SRQ, 1-7

interrupts
autopolling and, 6-5
checking for incorrect level

with ibtest, 4-2
jumper settings, 7-15

L

LACS status, A-5
language-related files, 1-2
linking applications

16-bit C applications, 3-21
32-bit C applications, 3-20

to 3-21
Listeners

definition, 1-5
finding all listeners, 3-15
LACS status, A-5

LOK status, A-3

M

manual. See documentation.
map level of ibconf utility. See

ibconf utility.
MAV (Message Available) bit, 6-4
measurements

reading
ibrd function, 3-12
Receive function, 3-19

waiting for
ibwait function, 3-11
WaitSRQ routine, 3-18

Message Available bit (MAV), 6-4
messages, sending across GPIB, 1-6

to 1-7

N

n* (repeat function n times)
function, ibic utility, 5-22 to 5-23

NDAC (not data accepted)
handshake line (table), 1-6

NI-488 applications, writing. See
applications, writing.

NI-488 functions, 3-2 to 3-3. See
also specific functions.

advantages, 3-2
board functions

description, 3-3
ibic utility examples, 5-31

to 5-35
device functions

description, 3-2
ibic utility examples, 5-28

to 5-30
ibic utility

common functions, 5-13
to 5-17

ibdev, 5-13 to 5-16
ibfind, 5-13
ibrd, 5-17
ibwrt, 5-16
syntax, 5-3 to 5-4

parallel polling, 6-10 to 6-12
when to use, 3-2

NI-488.2 applications, writing. See
applications, writing.

NI-488.2 language interface, 3-1
to 3-4

advantages, 3-1 to 3-2
NI-488 functions, 3-2 to 3-3
NI-488.2 routines, 3-3 to 3-4

NI-488.2 routines. See also specific
routines.

Index

© National Instruments Corp. I-9 NI-488.2M SRM for OS/2

ibic utility
common routines, 5-11

to 5-12
examples, 5-24 to 5-27
Receive, 5-12
Send, 5-11 to 5-12
syntax, 5-5 to 5-6

parallel polling, 6-9 to 6-10
when to use, 3-3
writing applications, 3-3 to 3-4

NI-488.2M driver, 1-1, 1-4
NI-488.2M software

API-related files, 1-3
driver utilities, 1-1
example program files, 1-2

to 1-3
files on distribution disk, 1-1
language-related files, 1-2
NI-488.2M driver, 1-1
OS/2 operation, 1-4 to 1-5
reconfiguring, 4-5

non-controller (example), 2-21
to 2-22

NRFD (not ready for data)
handshake line (table), 1-6

O

OS/2 API interface
API-related files, 1-3
using the OS/2 API

interface, 3-4
OS/2 operating system, 1-4 to 1-5
output selection level of ibconf

utility. See ibconf utility.

P

parallel polling
example, 2-18 to 2-20
implementation of, 6-9 to 6-12

with NI-488 functions, 6-10
to 6-12

with NI-488.2 routines, 6-9
to 6-10

setting duration of, 7-13
paths, including in LIBPATH

statement, 3-21
PPoll routine, 6-10
PPollUnconfig routine, 6-10
primary GPIB address, 7-10
print (display ASCII string)

function, ibic utility, 5-24
program shells

NI-488, 3-8
NI-488.2, 3-14

programming. See applications,
writing; GPIB programming.

programming examples. See
application examples.

R

ReadStatusByte routine, 3-18, 6-7
Receive function, 3-19
Receive routine

ibic utility, 5-12
identifying instruments, 3-16

reconfiguring NI-488.2M
software, 4-5

REM status, A-4
REN (remote enable) line

configuring assertion of, 7-12
description (table), 1-7

repeat function n times (n*)
function, ibic utility, 5-22 to 5-23

repeat previous function (!), ibic
utility, 5-21

routines. See NI-488.2 routines.
RQS status, A-3

Index

NI-488.2M SRM for OS/2 I-10 © National Instruments Corp.

S

secondary GPIB address, 7-10
Send routine

configuring instruments, 3-17
ibic utility, 5-11 to 5-12

SendIFC routine, 3-15
serial polling

automatic, 6-4 to 6-5
enabling, 7-13
interrupts and, 6-5
procedure for, 6-4 to 6-5
stuck SRQ state and, 6-5

service requests
from IEEE 488

devices, 6-4
from IEEE 488.2

devices, 6-4
SRQ and serial polling

with NI-488 device
functions, 6-6

with NI-488.2 routines, 6-6
to 6-8

timeout value, setting, 7-15
using NI-488.2 routines

(example), 2-16 to 2-17
service requests

automatic serial polling, 6-4
to 6-5

example, 2-10 to 2-13
RQS status, A-3
serial polling

IEEE 488 device
functions, 6-6

IEEE 488.2 routines, 6-6
to 6-8

SRQI status, A-2
Set function

description, 5-19 to 5-20
selecting NI-488.2 function

mode, 5-11
SRQ (service request) line

application example, 2-10
to 2-13

description (table), 1-7
ESRQ error code, B-9
requesting service, 6-3
serial polling

with NI-488 device
functions, 6-6

with NI-488.2 routines, 6-6
to 6-8

stuck SRQ state, 6-5
SRQI status, A-2
standards

ANSI/IEEE Standard
488.1-1987, 1-5

ANSI/IEEE Standard
488.2-1987, 1-5

status variables. See global
variables.

status word variable. See ibsta
(status word).

stuck SRQ condition, 6-5
System Controller

configuring, 7-12
definition, 1-6

T

TACS status, A-4
Talkers

definition, 1-5
TACS status, A-4

technical support, C-1
terminate read on EOS, 7-11
termination methods

data transfer termination, 6-1
to 6-2

device termination methods, 4-6
TestSRQ routine, 3-18, 6-7
timeout setting

configuring, 7-10
serial polls, 7-15

Index

© National Instruments Corp. I-11 NI-488.2M SRM for OS/2

timing errors, 4-5
TIMO status, A-2
*TRG command, 3-18
Trigger routine, 3-18
triggering GPIB devices (example),

2-4 to 2-5
turn off display (-) function, ibic

utility, 5-21 to 5-22
turn on display (+) function, ibic

utility, 5-21 to 5-22

W
WaitSRQ routine, 3-18, 6-7, 6-8
writing applications. See

applications, writing.

	NI-488.2M Software Reference Manual for OS/2
	Important Information
	National Instruments Corporate Headquarters
	Branch Offices
	Limited Warranty
	Copyright
	Trademarks
	Warning

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	How to Use This Manual Set
	Related Documentation
	Customer Communication

	Chapter 1 NI-488.2M Software Description
	The NI-488.2M Software Package
	NI-488.2M Driver and Driver Utilities
	Language Files
	Example Program Files
	API-Related Files

	How the NI-488.2M Software Works with OS/2
	GPIB Overview
	The IEEE 488 Standard and GPIB
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	Sending Messages Across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines

	Setting Up and Configuring Your System
	Controlling More Than One Board

	Chapter 2 Application Examples
	Example 1: Basic Communication
	Example 2: Clearing and Triggering Devices
	Example 3: Asynchronous I/O
	Example 4: End-of-String Mode
	Example 5: Service Requests
	Example 6: Basic Communication with IEEE 488.2 Compliant Devices
	Example 7: Serial Polls Using NI-488.2 Routines
	Example 8: Parallel Polls
	Example 9: Non-Controller Example

	Chapter 3 Developing Your Application
	Choosing a Programming Method
	Using the NI-488.2 Language Interface
	Using NI-488 Functions: One Device for Each Board
	Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices

	Using the OS/2 API Interface

	Checking Status with Global Variables
	Status Word—ibsta
	Error Variable—iberr
	Count Variables—ibcnt and ibcntl

	Using ibic to Communicate with Devices
	Writing Your NI-488 Application
	Items to Include
	NI-488 Program Shell
	General Program Steps and Examples

	Writing Your NI-488.2 Application
	Items to Include
	NI-488.2 Program Shell
	General Program Steps and Examples
	Step 1. Initialization
	Step 2. Find All Listeners
	Step 3. Identify the Instrument
	Step 4. Initialize the Instrument
	Step 5. Configure the Instrument
	Step 6. Trigger the Instrument
	Step 7. Wait for the Measurement
	Step 8. Read the Measurement
	Step 9. Process the Data
	Step 10. Place the Board Offline

	Compiling and Linking Your Program
	32-Bit C Applications
	16-Bit C Applications

	Running Your Application Program

	Chapter 4 Debugging Your Application
	Running ibtest
	Presence Test of Driver
	Presence Test of GPIB Board
	Incorrect Interrupt Level
	GPIB Cables Connected

	Debugging with the Global Status Variables
	Debugging with ibic
	GPIB Error Codes
	Configuration Errors
	Reconfiguring the NI-488.2M Software

	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method

	Chapter 5 ibic--Interface Bus Interactive Control Utility
	Overview
	Starting ibic
	Exiting ibic
	ibic Syntax
	Adding End-of-String Characters
	Status Word Return
	Error Codes Return
	Count Return
	Common NI-488.2 Routines in ibic
	Send
	Receive

	Common NI-488 Functions in ibic
	ibfind
	ibdev
	ibwrt
	ibrd

	Auxiliary Functions
	Set (Select Device or Board)
	Help (Display Help Information)
	! (Repeat Previous Function)
	- (Turn OFF Display) and + (Turn ON Display)
	n* (Repeat Function n Times)
	$ (Execute Indirect File)
	Print (Display the ASCII String)

	ibic Examples
	NI-488.2 Routines Example
	NI-488 Device Functions Example
	NI-488 Board Functions Example

	Chapter 6 GPIB Programming Techniques
	Termination of Data Transfers
	Waiting for GPIB Conditions
	Device-Level Calls and Bus Management
	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Autopolling and the Stuck SRQ State
	Autopolling and Interrupts

	SRQ and Serial Polling with NI-488 Device Functions
	SRQ and Serial Polling with NI-488.2 Routines
	Example 1
	Example 2

	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with NI-488.2 Routines
	Parallel Polling with NI-488 Functions

	Chapter 7 ibconf—Interface Bus Configuration Utility
	Overview
	Starting ibconf
	Levels of ibconf
	Input Selection Level
	Map Level
	Device Map of the Boards
	Help
	Rename
	(Dis)connect
	Edit
	Exit

	Description Level
	Change Characteristics
	Next Board/Device
	Help
	Reset Value
	Return to Map

	Output Selection Level

	Board and Device Configuration Options
	Primary GPIB Address
	Secondary GPIB Address
	Timeout Setting
	Terminate Read on EOS
	Set EOI with EOS on Writes
	Type of Compare on EOS
	EOS Byte
	Send EOI at End of Write
	GPIB-Specific Errors
	System Controller (Board Characteristic Only)
	Assert REN when SC (Board Characteristic Only)
	Enable Auto Serial Polling (Board Characteristic Only)
	Enable CIC Protocol (Board Characteristic Only)
	Bus Timing (Board Characteristic Only)
	Parallel Poll Duration (Board Characteristic Only)
	Use This GPIB Interface (Board Characteristic Only)
	Base I/O Address (Board Characteristic Only)
	DMA Channel (Board Characteristic Only)
	Interrupt Jumper Setting (Board Characteristic Only)
	DMA Transfer Mode (Board Characteristic Only)
	Serial Poll Timeout (Device Characteristic Only)
	Enable Repeat Addressing (Device Characteristic Only)

	Default Configurations in ibconf
	Exiting ibconf

	Appendix A Status Word Conditions
	Appendix B Error Codes and Solutions
	Appendix C Customer Communication
	Technical Support Form
	Documentation Comment Form

	Glossary
	Index
	Figures
	Figure 1-1. How the NI-488.2M Software Works with OS/2
	Figure 1-2. Linear and Star System Configuration
	Figure 1-3. Example of Multiboard System Setup
	Figure 2-1. Program Flowchart for Example 1
	Figure 2-2. Program Flowchart for Example 2
	Figure 2-3. Program Flowchart for Example 3
	Figure 2-4. Program Flowchart for Example 4
	Figure 2-5. Program Flowchart for Example 5
	Figure 2-6. Program Flowchart for Example 6
	Figure 2-7. Program Flowchart for Example 7
	Figure 2-8. Program Flowchart for Example 8
	Figure 2-9. Program Flowchart for Example 9
	Figure 3-1. General Program Shell Using NI-488 Device Functions
	Figure 3-2. General Program Shell Using NI-488.2 Routines
	Figure 7-1. Input Selection Level of ibconf
	Figure 7-2. Map Level of ibconf
	Figure 7-3. Description Level of ibconf
	Figure 7-4. Output Selection Level of ibconf

	Tables
	Table 1-1. GPIB Handshake Lines
	Table 1-2. GPIB Interface Management Lines
	Table 3-1. Status Word (ibsta) Layout
	Table 4-1. GPIB Error Codes
	Table 5-1. Syntax for NI-488 Functions in ibic
	Table 5-2. Syntax for NI-488.2 Routines in ibic
	Table 5-3. Auxiliary Functions in ibic
	Table A-1. Status Word (ibsta) Layout
	Table B-1. GPIB Error Codes

